結果
問題 | No.2583 Differential Equation (Enhanced version) |
ユーザー | maspy |
提出日時 | 2023-12-11 01:36:10 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 989 ms / 10,000 ms |
コード長 | 48,905 bytes |
コンパイル時間 | 12,547 ms |
コンパイル使用メモリ | 347,496 KB |
実行使用メモリ | 40,316 KB |
最終ジャッジ日時 | 2024-09-27 04:15:43 |
合計ジャッジ時間 | 22,248 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 6 ms
6,816 KB |
testcase_04 | AC | 4 ms
6,812 KB |
testcase_05 | AC | 6 ms
6,940 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 5 ms
6,944 KB |
testcase_08 | AC | 4 ms
6,940 KB |
testcase_09 | AC | 8 ms
6,940 KB |
testcase_10 | AC | 5 ms
6,940 KB |
testcase_11 | AC | 6 ms
6,944 KB |
testcase_12 | AC | 3 ms
6,944 KB |
testcase_13 | AC | 488 ms
22,644 KB |
testcase_14 | AC | 77 ms
6,944 KB |
testcase_15 | AC | 175 ms
9,964 KB |
testcase_16 | AC | 668 ms
27,972 KB |
testcase_17 | AC | 51 ms
6,940 KB |
testcase_18 | AC | 315 ms
16,412 KB |
testcase_19 | AC | 235 ms
13,552 KB |
testcase_20 | AC | 228 ms
12,588 KB |
testcase_21 | AC | 17 ms
6,944 KB |
testcase_22 | AC | 498 ms
23,324 KB |
testcase_23 | AC | 950 ms
40,216 KB |
testcase_24 | AC | 951 ms
40,212 KB |
testcase_25 | AC | 948 ms
40,216 KB |
testcase_26 | AC | 964 ms
40,316 KB |
testcase_27 | AC | 971 ms
40,220 KB |
testcase_28 | AC | 118 ms
9,504 KB |
testcase_29 | AC | 757 ms
36,988 KB |
testcase_30 | AC | 103 ms
8,248 KB |
testcase_31 | AC | 8 ms
6,944 KB |
testcase_32 | AC | 8 ms
6,944 KB |
testcase_33 | AC | 5 ms
6,944 KB |
testcase_34 | AC | 2 ms
6,944 KB |
testcase_35 | AC | 28 ms
7,916 KB |
testcase_36 | AC | 2 ms
6,940 KB |
testcase_37 | AC | 27 ms
7,912 KB |
testcase_38 | AC | 866 ms
40,028 KB |
testcase_39 | AC | 989 ms
40,216 KB |
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } int popcnt_mod_2(int x) { return __builtin_parity(x); } int popcnt_mod_2(u32 x) { return __builtin_parity(x); } int popcnt_mod_2(ll x) { return __builtin_parityll(x); } int popcnt_mod_2(u64 x) { return __builtin_parityll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> T floor(T a, T b) { return a / b - (a % b && (a ^ b) < 0); } template <typename T> T ceil(T x, T y) { return floor(x + y - 1, y); } template <typename T> T bmod(T x, T y) { return x - y * floor(x, y); } template <typename T> pair<T, T> divmod(T x, T y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sm = 0; for (auto &&a: A) sm += a; return sm; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; (check(x) ? ok : ng) = x; } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; (check(x) ? ok : ng) = x; } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" #define FASTIO #include <unistd.h> // https://judge.yosupo.jp/submission/21623 namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memcpy(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(u32 &x) { rd_integer(x); } void rd(u64 &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } void rd(f128 &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d: x) rd(d); } template <class T> void rd(vc<T> &x) { for (auto &d: x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &... t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c: s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(u32 x) { wt_integer(x); } void wt(u64 x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } void wt(f128 x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } // gcc expansion. called automaticall after main. void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::read; using fastio::print; using fastio::flush; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define U32(...) \ u32 __VA_ARGS__; \ read(__VA_ARGS__) #define U64(...) \ u64 __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 3 "main.cpp" #line 2 "/home/maspy/compro/library/mod/modint_common.hpp" struct has_mod_impl { template <class T> static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {}; template <typename mint> mint inv(int n) { static const int mod = mint::get_mod(); static vector<mint> dat = {0, 1}; assert(0 <= n); if (n >= mod) n %= mod; while (len(dat) <= n) { int k = len(dat); int q = (mod + k - 1) / k; dat.eb(dat[k * q - mod] * mint::raw(q)); } return dat[n]; } template <typename mint> mint fact(int n) { static const int mod = mint::get_mod(); assert(0 <= n && n < mod); static vector<mint> dat = {1, 1}; while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat))); return dat[n]; } template <typename mint> mint fact_inv(int n) { static vector<mint> dat = {1, 1}; if (n < 0) return mint(0); while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat))); return dat[n]; } template <class mint, class... Ts> mint fact_invs(Ts... xs) { return (mint(1) * ... * fact_inv<mint>(xs)); } template <typename mint, class Head, class... Tail> mint multinomial(Head &&head, Tail &&... tail) { return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...); } template <typename mint> mint C_dense(int n, int k) { static vvc<mint> C; static int H = 0, W = 0; auto calc = [&](int i, int j) -> mint { if (i == 0) return (j == 0 ? mint(1) : mint(0)); return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0); }; if (W <= k) { FOR(i, H) { C[i].resize(k + 1); FOR(j, W, k + 1) { C[i][j] = calc(i, j); } } W = k + 1; } if (H <= n) { C.resize(n + 1); FOR(i, H, n + 1) { C[i].resize(W); FOR(j, W) { C[i][j] = calc(i, j); } } H = n + 1; } return C[n][k]; } template <typename mint, bool large = false, bool dense = false> mint C(ll n, ll k) { assert(n >= 0); if (k < 0 || n < k) return 0; if constexpr (dense) return C_dense<mint>(n, k); if constexpr (!large) return multinomial<mint>(n, k, n - k); k = min(k, n - k); mint x(1); FOR(i, k) x *= mint(n - i); return x * fact_inv<mint>(k); } template <typename mint, bool large = false> mint C_inv(ll n, ll k) { assert(n >= 0); assert(0 <= k && k <= n); if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k); return mint(1) / C<mint, 1>(n, k); } // [x^d](1-x)^{-n} template <typename mint, bool large = false, bool dense = false> mint C_negative(ll n, ll d) { assert(n >= 0); if (d < 0) return mint(0); if (n == 0) { return (d == 0 ? mint(1) : mint(0)); } return C<mint, large, dense>(n + d - 1, d); } #line 3 "/home/maspy/compro/library/mod/modint.hpp" template <int mod> struct modint { static constexpr u32 umod = u32(mod); static_assert(umod < u32(1) << 31); u32 val; static modint raw(u32 v) { modint x; x.val = v; return x; } constexpr modint() : val(0) {} constexpr modint(u32 x) : val(x % umod) {} constexpr modint(u64 x) : val(x % umod) {} constexpr modint(u128 x) : val(x % umod) {} constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){}; constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){}; bool operator<(const modint &other) const { return val < other.val; } modint &operator+=(const modint &p) { if ((val += p.val) >= umod) val -= umod; return *this; } modint &operator-=(const modint &p) { if ((val += umod - p.val) >= umod) val -= umod; return *this; } modint &operator*=(const modint &p) { val = u64(val) * p.val % umod; return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint::raw(val ? mod - val : u32(0)); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return val == p.val; } bool operator!=(const modint &p) const { return val != p.val; } modint inverse() const { int a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } return modint(u); } modint pow(ll n) const { assert(n >= 0); modint ret(1), mul(val); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } static constexpr int get_mod() { return mod; } // (n, r), r は 1 の 2^n 乗根 static constexpr pair<int, int> ntt_info() { if (mod == 120586241) return {20, 74066978}; if (mod == 167772161) return {25, 17}; if (mod == 469762049) return {26, 30}; if (mod == 754974721) return {24, 362}; if (mod == 880803841) return {23, 211}; if (mod == 943718401) return {22, 663003469}; if (mod == 998244353) return {23, 31}; if (mod == 1045430273) return {20, 363}; if (mod == 1051721729) return {20, 330}; if (mod == 1053818881) return {20, 2789}; return {-1, -1}; } static constexpr bool can_ntt() { return ntt_info().fi != -1; } }; #ifdef FASTIO template <int mod> void rd(modint<mod> &x) { fastio::rd(x.val); x.val %= mod; // assert(0 <= x.val && x.val < mod); } template <int mod> void wt(modint<mod> x) { fastio::wt(x.val); } #endif using modint107 = modint<1000000007>; using modint998 = modint<998244353>; #line 2 "/home/maspy/compro/library/poly/count_terms.hpp" template<typename mint> int count_terms(const vc<mint>& f){ int t = 0; FOR(i, len(f)) if(f[i] != mint(0)) ++t; return t; } #line 2 "/home/maspy/compro/library/mod/mod_inv.hpp" // long でも大丈夫 // (val * x - 1) が mod の倍数になるようにする // 特に mod=0 なら x=0 が満たす ll mod_inv(ll val, ll mod) { if (mod == 0) return 0; mod = abs(mod); val %= mod; if (val < 0) val += mod; ll a = val, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b), swap(u -= t * v, v); } if (u < 0) u += mod; return u; } #line 1 "/home/maspy/compro/library/mod/crt3.hpp" constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) { a %= mod; u64 res = 1; FOR(32) { if (n & 1) res = res * a % mod; a = a * a % mod, n /= 2; } return res; } template <typename T, u32 p0, u32 p1, u32 p2> T CRT3(u64 a0, u64 a1, u64 a2) { static_assert(p0 < p1 && p1 < p2); static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1); static constexpr u64 x01_2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2); u64 c = (a1 - a0 + p1) * x0_1 % p1; u64 a = a0 + c * p0; c = (a2 - a % p2 + p2) * x01_2 % p2; return T(a) + T(c) * T(p0) * T(p1); } #line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp" template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vector<T> ans(n + m - 1); FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j]; return ans; } template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr> vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) { int n = int(a.size()), m = int(b.size()); if (n > m) return convolution_naive<T>(b, a); if (n == 0) return {}; vc<T> ans(n + m - 1); if (n <= 16 && (T::get_mod() < (1 << 30))) { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u64 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = sm; } } else { for (int k = 0; k < n + m - 1; ++k) { int s = max(0, k - m + 1); int t = min(n, k + 1); u128 sm = 0; for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); } ans[k] = T::raw(sm % T::get_mod()); } } return ans; } #line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp" // 任意の環でできる template <typename T> vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) { const int thresh = 30; if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g); int n = max(len(f), len(g)); int m = ceil(n, 2); vc<T> f1, f2, g1, g2; if (len(f) < m) f1 = f; if (len(f) >= m) f1 = {f.begin(), f.begin() + m}; if (len(f) >= m) f2 = {f.begin() + m, f.end()}; if (len(g) < m) g1 = g; if (len(g) >= m) g1 = {g.begin(), g.begin() + m}; if (len(g) >= m) g2 = {g.begin() + m, g.end()}; vc<T> a = convolution_karatsuba(f1, g1); vc<T> b = convolution_karatsuba(f2, g2); FOR(i, len(f2)) f1[i] += f2[i]; FOR(i, len(g2)) g1[i] += g2[i]; vc<T> c = convolution_karatsuba(f1, g1); vc<T> F(len(f) + len(g) - 1); assert(2 * m + len(b) <= len(F)); FOR(i, len(a)) F[i] += a[i], c[i] -= a[i]; FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i]; if (c.back() == T(0)) c.pop_back(); FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i]; return F; } #line 2 "/home/maspy/compro/library/poly/ntt.hpp" template <class mint> void ntt(vector<mint>& a, bool inverse) { assert(mint::can_ntt()); const int rank2 = mint::ntt_info().fi; const int mod = mint::get_mod(); static array<mint, 30> root, iroot; static array<mint, 30> rate2, irate2; static array<mint, 30> rate3, irate3; static bool prepared = 0; if (!prepared) { prepared = 1; root[rank2] = mint::ntt_info().se; iroot[rank2] = mint(1) / root[rank2]; FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } int n = int(a.size()); int h = topbit(n); assert(n == 1 << h); if (!inverse) { int len = 0; while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); mint rot = 1; FOR(s, 1 << len) { int offset = s << (h - len); FOR(i, p) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } rot *= rate2[topbit(~s & -~s)]; } len++; } else { int p = 1 << (h - len - 2); mint rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { u64 mod2 = u64(mod) * mod; u64 a0 = a[i + offset].val; u64 a1 = u64(a[i + offset + p].val) * rot.val; u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val; u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val; u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val; u64 na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } rot *= rate3[topbit(~s & -~s)]; } len += 2; } } } else { mint coef = mint(1) / mint(len(a)); FOR(i, len(a)) a[i] *= coef; int len = h; while (len) { if (len == 1) { int p = 1 << (h - len); mint irot = 1; FOR(s, 1 << (len - 1)) { int offset = s << (h - len + 1); FOR(i, p) { u64 l = a[i + offset].val; u64 r = a[i + offset + p].val; a[i + offset] = l + r; a[i + offset + p] = (mod + l - r) * irot.val; } irot *= irate2[topbit(~s & -~s)]; } len--; } else { int p = 1 << (h - len); mint irot = 1, iimag = iroot[2]; FOR(s, (1 << (len - 2))) { mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { u64 a0 = a[i + offset + 0 * p].val; u64 a1 = a[i + offset + 1 * p].val; u64 a2 = a[i + offset + 2 * p].val; u64 a3 = a[i + offset + 3 * p].val; u64 x = (mod + a2 - a3) * iimag.val % mod; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val; a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val; a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val; } irot *= irate3[topbit(~s & -~s)]; } len -= 2; } } } } #line 1 "/home/maspy/compro/library/poly/fft.hpp" namespace CFFT { using real = double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C& c) const { return C(x + c.x, y + c.y); } inline C operator-(const C& c) const { return C(x - c.x, y - c.y); } inline C operator*(const C& c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector<C> rts = {{0, 0}, {1, 0}}; vector<int> rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector<C>& a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } } // namespace CFFT #line 9 "/home/maspy/compro/library/poly/convolution.hpp" template <class mint> vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) { if (a.empty() || b.empty()) return {}; int n = int(a.size()), m = int(b.size()); int sz = 1; while (sz < n + m - 1) sz *= 2; // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。 if ((n + m - 3) <= sz / 2) { auto a_last = a.back(), b_last = b.back(); a.pop_back(), b.pop_back(); auto c = convolution(a, b); c.resize(n + m - 1); c[n + m - 2] = a_last * b_last; FOR(i, len(a)) c[i + len(b)] += a[i] * b_last; FOR(i, len(b)) c[i + len(a)] += b[i] * a_last; return c; } a.resize(sz), b.resize(sz); bool same = a == b; ntt(a, 0); if (same) { b = a; } else { ntt(b, 0); } FOR(i, sz) a[i] *= b[i]; ntt(a, 1); a.resize(n + m - 1); return a; } template <typename mint> vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; static constexpr int p0 = 167772161; static constexpr int p1 = 469762049; static constexpr int p2 = 754974721; using mint0 = modint<p0>; using mint1 = modint<p1>; using mint2 = modint<p2>; vc<mint0> a0(n), b0(m); vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val; FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val; auto c0 = convolution_ntt<mint0>(a0, b0); auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); vc<mint> c(len(c0)); FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); } return c; } template <typename R> vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) { using C = CFFT::C; int need = (int)a.size() + (int)b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; CFFT::ensure_base(nbase); int sz = 1 << nbase; vector<C> fa(sz); for (int i = 0; i < sz; i++) { int x = (i < (int)a.size() ? a[i] : 0); int y = (i < (int)b.size() ? b[i] : 0); fa[i] = C(x, y); } CFFT::fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } CFFT::fft(fa, sz >> 1); vector<double> ret(need); for (int i = 0; i < need; i++) { ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (min(n, m) <= 2500) return convolution_naive(a, b); ll abs_sum_a = 0, abs_sum_b = 0; ll LIM = 1e15; FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i])); FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i])); if (i128(abs_sum_a) * abs_sum_b < 1e15) { vc<double> c = convolution_fft<ll>(a, b); vc<ll> res(len(c)); FOR(i, len(c)) res[i] = ll(floor(c[i] + .5)); return res; } static constexpr unsigned long long MOD1 = 754974721; // 2^24 static constexpr unsigned long long MOD2 = 167772161; // 2^25 static constexpr unsigned long long MOD3 = 469762049; // 2^26 static constexpr unsigned long long M2M3 = MOD2 * MOD3; static constexpr unsigned long long M1M3 = MOD1 * MOD3; static constexpr unsigned long long M1M2 = MOD1 * MOD2; static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3; static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1); static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2); static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3); using mint1 = modint<MOD1>; using mint2 = modint<MOD2>; using mint3 = modint<MOD3>; vc<mint1> a1(n), b1(m); vc<mint2> a2(n), b2(m); vc<mint3> a3(n), b3(m); FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i]; FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i]; auto c1 = convolution_ntt<mint1>(a1, b1); auto c2 = convolution_ntt<mint2>(a2, b2); auto c3 = convolution_ntt<mint3>(a3, b3); vc<ll> c(n + m - 1); FOR(i, n + m - 1) { u64 x = 0; x += (c1[i].val * i1) % MOD1 * M2M3; x += (c2[i].val * i2) % MOD2 * M1M3; x += (c3[i].val * i3) % MOD3 * M1M2; ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1)); if (diff < 0) diff += MOD1; static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3}; x -= offset[diff % 5]; c[i] = x; } return c; } template <typename mint> vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) { int n = len(a), m = len(b); if (!n || !m) return {}; if (mint::can_ntt()) { if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b); return convolution_ntt(a, b); } if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b); return convolution_garner(a, b); } #line 4 "/home/maspy/compro/library/poly/fps_inv.hpp" template <typename mint> vc<mint> fps_inv_sparse(const vc<mint>& f) { int N = len(f); vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc<mint> g(N); mint g0 = mint(1) / f[0]; g[0] = g0; FOR(n, 1, N) { mint rhs = 0; for (auto&& [k, fk]: dat) { if (k > n) break; rhs -= fk * g[n - k]; } g[n] = rhs * g0; } return g; } template <typename mint> vc<mint> fps_inv_dense_ntt(const vc<mint>& F) { vc<mint> G = {mint(1) / F[0]}; ll N = len(F), n = 1; G.reserve(N); while (n < N) { vc<mint> f(2 * n), g(2 * n); FOR(i, min(N, 2 * n)) f[i] = F[i]; FOR(i, n) g[i] = G[i]; ntt(f, false), ntt(g, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR(i, n) f[i] = 0; ntt(f, false); FOR(i, 2 * n) f[i] *= g[i]; ntt(f, true); FOR(i, n, min(N, 2 * n)) G.eb(-f[i]); n *= 2; } return G; } template <typename mint> vc<mint> fps_inv_dense(const vc<mint>& F) { if (mint::can_ntt()) return fps_inv_dense_ntt(F); const int N = len(F); vc<mint> R = {mint(1) / F[0]}; vc<mint> p; int m = 1; while (m < N) { p = convolution(R, R); p.resize(m + m); vc<mint> f = {F.begin(), F.begin() + min(m + m, N)}; p = convolution(p, f); R.resize(m + m); FOR(i, m + m) R[i] = R[i] + R[i] - p[i]; m += m; } R.resize(N); return R; } template <typename mint> vc<mint> fps_inv(const vc<mint>& f) { assert(f[0] != mint(0)); int n = count_terms(f); int t = (mint::can_ntt() ? 160 : 820); return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f)); } #line 2 "/home/maspy/compro/library/poly/poly_divmod.hpp" template <typename mint> pair<vc<mint>, vc<mint>> poly_divmod(vc<mint> f, vc<mint> g) { assert(g.back() != 0); if (len(f) < len(g)) { return {{}, f}; } auto rf = f, rg = g; reverse(all(rf)), reverse(all(rg)); ll deg = len(rf) - len(rg) + 1; rf.resize(deg), rg.resize(deg); rg = fps_inv(rg); auto q = convolution(rf, rg); q.resize(deg); reverse(all(q)); auto h = convolution(q, g); FOR(i, len(f)) f[i] -= h[i]; while (len(f) > 0 && f.back() == 0) f.pop_back(); return {q, f}; } #line 2 "/home/maspy/compro/library/poly/integrate.hpp" // 不定積分:integrate(f) // 定積分:integrate(f, L, R) template <typename mint> vc<mint> integrate(const vc<mint>& f) { vc<mint> g(len(f) + 1); FOR3(i, 1, len(g)) g[i] = f[i - 1] * inv<mint>(i); return g; } // 不定積分:integrate(f) // 定積分:integrate(f, L, R) template <typename mint> mint integrate(const vc<mint>& f, mint L, mint R) { mint I = 0; mint pow_L = 1, pow_R = 1; FOR(i, len(f)) { pow_L *= L, pow_R *= R; I += inv<mint>(i + 1) * f[i] * (pow_R - pow_L); } return I; } #line 2 "/home/maspy/compro/library/poly/differentiate.hpp" template <typename mint> vc<mint> differentiate(const vc<mint>& f) { if (len(f) <= 1) return {}; vc<mint> g(len(f) - 1); FOR(i, len(g)) g[i] = f[i + 1] * mint(i + 1); return g; } #line 6 "/home/maspy/compro/library/poly/fps_exp.hpp" template <typename mint> vc<mint> fps_exp_sparse(vc<mint>& f) { if (len(f) == 0) return {mint(1)}; assert(f[0] == 0); int N = len(f); // df を持たせる vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i - 1, mint(i) * f[i]); vc<mint> F(N); F[0] = 1; FOR(n, 1, N) { mint rhs = 0; for (auto&& [k, fk]: dat) { if (k > n - 1) break; rhs += fk * F[n - 1 - k]; } F[n] = rhs * inv<mint>(n); } return F; } template <typename mint> vc<mint> fps_exp_dense(vc<mint>& h) { const int n = len(h); assert(n > 0 && h[0] == mint(0)); if (mint::can_ntt()) { vc<mint>& f = h; vc<mint> b = {1, (1 < n ? f[1] : 0)}; vc<mint> c = {1}, z1, z2 = {1, 1}; while (len(b) < n) { int m = len(b); auto y = b; y.resize(2 * m); ntt(y, 0); z1 = z2; vc<mint> z(m); FOR(i, m) z[i] = y[i] * z1[i]; ntt(z, 1); FOR(i, m / 2) z[i] = 0; ntt(z, 0); FOR(i, m) z[i] *= -z1[i]; ntt(z, 1); c.insert(c.end(), z.begin() + m / 2, z.end()); z2 = c; z2.resize(2 * m); ntt(z2, 0); vc<mint> x(f.begin(), f.begin() + m); FOR(i, len(x) - 1) x[i] = x[i + 1] * mint(i + 1); x.back() = 0; ntt(x, 0); FOR(i, m) x[i] *= y[i]; ntt(x, 1); FOR(i, m - 1) x[i] -= b[i + 1] * mint(i + 1); x.resize(m + m); FOR(i, m - 1) x[m + i] = x[i], x[i] = 0; ntt(x, 0); FOR(i, m + m) x[i] *= z2[i]; ntt(x, 1); FOR_R(i, len(x) - 1) x[i + 1] = x[i] * inv<mint>(i + 1); x[0] = 0; FOR3(i, m, min(n, m + m)) x[i] += f[i]; FOR(i, m) x[i] = 0; ntt(x, 0); FOR(i, m + m) x[i] *= y[i]; ntt(x, 1); b.insert(b.end(), x.begin() + m, x.end()); } b.resize(n); return b; } const int L = len(h); assert(L > 0 && h[0] == mint(0)); int LOG = 0; while (1 << LOG < L) ++LOG; h.resize(1 << LOG); auto dh = differentiate(h); vc<mint> f = {1}, g = {1}; int m = 1; vc<mint> p; FOR(LOG) { p = convolution(f, g); p.resize(m); p = convolution(p, g); p.resize(m); g.resize(m); FOR(i, m) g[i] += g[i] - p[i]; p = {dh.begin(), dh.begin() + m - 1}; p = convolution(f, p); p.resize(m + m - 1); FOR(i, m + m - 1) p[i] = -p[i]; FOR(i, m - 1) p[i] += mint(i + 1) * f[i + 1]; p = convolution(p, g); p.resize(m + m - 1); FOR(i, m - 1) p[i] += dh[i]; p = integrate(p); FOR(i, m + m) p[i] = h[i] - p[i]; p[0] += mint(1); f = convolution(f, p); f.resize(m + m); m += m; } f.resize(L); return f; } template <typename mint> vc<mint> fps_exp(vc<mint>& f) { int n = count_terms(f); int t = (mint::can_ntt() ? 320 : 3000); return (n <= t ? fps_exp_sparse<mint>(f) : fps_exp_dense<mint>(f)); } #line 2 "/home/maspy/compro/library/poly/fps_log.hpp" #line 5 "/home/maspy/compro/library/poly/fps_log.hpp" template <typename mint> vc<mint> fps_log_dense(const vc<mint>& f) { assert(f[0] == mint(1)); ll N = len(f); vc<mint> df = f; FOR(i, N) df[i] *= mint(i); df.erase(df.begin()); auto f_inv = fps_inv(f); auto g = convolution(df, f_inv); g.resize(N - 1); g.insert(g.begin(), 0); FOR(i, N) g[i] *= inv<mint>(i); return g; } template <typename mint> vc<mint> fps_log_sparse(const vc<mint>& f) { int N = f.size(); vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc<mint> F(N); vc<mint> g(N - 1); for (int n = 0; n < N - 1; ++n) { mint rhs = mint(n + 1) * f[n + 1]; for (auto&& [i, fi]: dat) { if (i > n) break; rhs -= fi * g[n - i]; } g[n] = rhs; F[n + 1] = rhs * inv<mint>(n + 1); } return F; } template <typename mint> vc<mint> fps_log(const vc<mint>& f) { assert(f[0] == mint(1)); int n = count_terms(f); int t = (mint::can_ntt() ? 200 : 1200); return (n <= t ? fps_log_sparse<mint>(f) : fps_log_dense<mint>(f)); } #line 5 "/home/maspy/compro/library/poly/fps_pow.hpp" // fps の k 乗を求める。k >= 0 の前提である。 // 定数項が 1 で、k が mint の場合には、fps_pow_1 を使うこと。 // ・dense な場合: log, exp を使う O(NlogN) // ・sparse な場合: O(NK) template <typename mint> vc<mint> fps_pow(const vc<mint>& f, ll k) { assert(0 <= k); int n = len(f); if (k == 0) { vc<mint> g(n); g[0] = mint(1); return g; } int d = n; FOR_R(i, n) if (f[i] != 0) d = i; // d * k >= n if (d >= ceil<ll>(n, k)) { vc<mint> g(n); return g; } ll off = d * k; mint c = f[d]; mint c_inv = mint(1) / mint(c); vc<mint> g(n - off); FOR(i, n - off) g[i] = f[d + i] * c_inv; g = fps_pow_1(g, mint(k)); vc<mint> h(n); c = c.pow(k); FOR(i, len(g)) h[off + i] = g[i] * c; return h; } template <typename mint> vc<mint> fps_pow_1_sparse(const vc<mint>& f, mint K) { int N = len(f); assert(N == 0 || f[0] == mint(1)); vc<pair<int, mint>> dat; FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]); vc<mint> g(N); g[0] = 1; FOR(n, N - 1) { mint& x = g[n + 1]; for (auto&& [d, cf]: dat) { if (d > n + 1) break; mint t = cf * g[n - d + 1]; x += t * (K * mint(d) - mint(n - d + 1)); } x *= inv<mint>(n + 1); } return g; } template <typename mint> vc<mint> fps_pow_1_dense(const vc<mint>& f, mint K) { assert(f[0] == mint(1)); auto log_f = fps_log(f); FOR(i, len(f)) log_f[i] *= K; return fps_exp_dense(log_f); } template <typename mint> vc<mint> fps_pow_1(const vc<mint>& f, mint K) { int n = count_terms(f); int t = (mint::can_ntt() ? 100 : 1300); return (n <= t ? fps_pow_1_sparse(f, K) : fps_pow_1_dense(f, K)); } // f^e, sparse, O(NMK) template <typename mint> vvc<mint> fps_pow_1_sparse_2d(vvc<mint> f, mint n) { assert(f[0][0] == mint(1)); int N = len(f), M = len(f[0]); vv(mint, dp, N, M); dp[0] = fps_pow_1_sparse<mint>(f[0], n); vc<tuple<int, int, mint>> dat; FOR(i, N) FOR(j, M) { if ((i > 0 || j > 0) && f[i][j] != mint(0)) dat.eb(i, j, f[i][j]); } FOR(i, 1, N) { FOR(j, M) { // F = f^n, f dF = n df F // [x^{i-1}y^j] mint lhs = 0, rhs = 0; for (auto&& [a, b, c]: dat) { if (a < i && b <= j) lhs += dp[i - a][j - b] * mint(i - a); if (a <= i && b <= j) rhs += dp[i - a][j - b] * c * mint(a); } dp[i][j] = (n * rhs - lhs) * inv<mint>(i); } } return dp; } #line 2 "/home/maspy/compro/library/poly/fps_div.hpp" #line 5 "/home/maspy/compro/library/poly/fps_div.hpp" // f/g. f の長さで出力される. template <typename mint, bool SPARSE = false> vc<mint> fps_div(vc<mint> f, vc<mint> g) { if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g); int n = len(f); g.resize(n); g = fps_inv<mint>(g); f = convolution(f, g); f.resize(n); return f; } // f/g ただし g は sparse template <typename mint> vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) { if (g[0] != mint(1)) { mint cf = g[0].inverse(); for (auto&& x: f) x *= cf; for (auto&& x: g) x *= cf; } vc<pair<int, mint>> dat; FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]); FOR(i, len(f)) { for (auto&& [j, x]: dat) { if (i >= j) f[i] += x * f[i - j]; } } return f; } #line 2 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp" #line 2 "/home/maspy/compro/library/nt/primetable.hpp" template <typename T = int> vc<T> primetable(int LIM) { ++LIM; const int S = 32768; static int done = 2; static vc<T> primes = {2}, sieve(S + 1); if (done < LIM) { done = LIM; primes = {2}, sieve.assign(S + 1, 0); const int R = LIM / 2; primes.reserve(int(LIM / log(LIM) * 1.1)); vc<pair<int, int>> cp; for (int i = 3; i <= S; i += 2) { if (!sieve[i]) { cp.eb(i, i * i / 2); for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1; } } for (int L = 1; L <= R; L += S) { array<bool, S> block{}; for (auto& [p, idx]: cp) for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1; FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1); } } int k = LB(primes, LIM + 1); return {primes.begin(), primes.begin() + k}; } #line 3 "/home/maspy/compro/library/mod/powertable.hpp" // a^0, ..., a^N template <typename mint> vc<mint> powertable_1(mint a, ll N) { // table of a^i vc<mint> f(N + 1, 1); FOR(i, N) f[i + 1] = a * f[i]; return f; } // 0^e, ..., N^e template <typename mint> vc<mint> powertable_2(ll e, ll N) { auto primes = primetable(N); vc<mint> f(N + 1, 1); f[0] = mint(0).pow(e); for (auto&& p: primes) { if (p > N) break; mint xp = mint(p).pow(e); ll pp = p; while (pp <= N) { ll i = pp; while (i <= N) { f[i] *= xp; i += pp; } pp *= p; } } return f; } #line 5 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp" // f(x) -> f(x+c) template <typename mint> vc<mint> poly_taylor_shift(vc<mint> f, mint c) { ll N = len(f); FOR(i, N) f[i] *= fact<mint>(i); auto b = powertable_1<mint>(c, N); FOR(i, N) b[i] *= fact_inv<mint>(i); reverse(all(f)); f = convolution(f, b); f.resize(N); reverse(all(f)); FOR(i, N) f[i] *= fact_inv<mint>(i); return f; } #line 2 "/home/maspy/compro/library/poly/composition_f_a_plus_bx.hpp" // f(a+bx) template <typename mint> vc<mint> composition_f_a_plus_bx(vc<mint> f, mint a, mint b) { f = poly_taylor_shift<mint>(f, a); // f(a+x) mint pow_b = 1; FOR(i, len(f)) f[i] *= pow_b, pow_b *= b; return f; } #line 3 "/home/maspy/compro/library/poly/composition_f_a_plus_bx_div_c_plus_dx.hpp" // f((a+bx)/(c+dx)) // only_numerator = true // -> (c+dx)^N f((a+bx)/(c+dx)) = sum f[i](a+bx)^i(c+dx)^{N-i} template <typename mint, bool only_numerator> vc<mint> composition_f_a_plus_bx_div_c_plus_dx(vc<mint> f, mint a, mint b, mint c, mint d) { int N = len(f) - 1; if constexpr (!only_numerator) { assert(c != mint(0)); vc<mint> F = composition_f_a_plus_bx_div_c_plus_dx<mint, true>(f, a, b, c, d); d /= c; c = c.inverse().pow(N); // c(1+dx)^{-N} vc<mint> g = {1, d}; g.resize(N + 1); g = fps_pow_1_sparse<mint>(g, -N); F = convolution(F, g); F.resize(N + 1); FOR(i, N + 1) F[i] *= c; return F; } if (mint(d) == 0) { mint pow_c = 1; FOR_R(i, N + 1) f[i] *= pow_c, pow_c *= c; return composition_f_a_plus_bx<mint>(f, a, b); } // t = c+dx a = (a * d - b * c) / d, b = b / d; // sum f[i] (a+bt)^i t^{N-i} f = composition_f_a_plus_bx(f, b, a); reverse(all(f)); return composition_f_a_plus_bx(f, c, d); } #line 10 "main.cpp" using mint = modint998; /* A(x)y+(x^2-1)y'=0 の解をとる. A(x)/1-x^2 = a'(x)+b/1-x+c/1+x となる a,b,c をとると e^{a(x)}(1-x)^{-b}(1+x)^c が満たす. F_k(x) = e^{a(x)}(1-x)^{-b}(1+x)^cG_k(x) とする. F_k'/F_k = a'(x)+b/1-x+c/1+x+G_k'/G_k = A(x)/1-x^2 + G_k'(x)/G_k(x) F_{k+1} = G_k'/G_k(x^2-1)F_k G_{k+1}=G_k/F_k F_{k+1} = G_k'(x)(x^2-1) 結局 微分して (x^2-1) 倍 に帰着 とりあえずここまで実装する 欲しいもの:G の [x^(N+1)] まで 初期値:G の [x^(2N+1)] まで */ vc<mint> sub2(vc<mint> F, ll N) { // F_{k+1} = (xx+2x)F_k' // はみ出るやつも全部保持する必要あり! F.resize(len(F) + N); /* FOR(N) { vc<mint> nxt(len(F)); FOR(i, 1, len(F)) { mint x = mint(i) * F[i]; nxt[i] += x + x; if (i + 1 < len(F)) nxt[i + 1] += x; } swap(F, nxt); } return F; */ // (x/(2+x))^d が固有値 2d の固有関数 // F(x) = \sum g_k(x/(2+x))^k と書けば勝ち // F(x) = G(x/(2+x)) // F((2y)/(1-y)) = G(y) // F((2y)/(1-y)) = G(y) vc<mint> G = composition_f_a_plus_bx_div_c_plus_dx<mint, 0>( F, mint(0), mint(2), mint(1), mint(-1)); // print(F); // print(G); FOR(d, len(G)) { G[d] *= mint(2 * d).pow(N); } // F(x) = G(x/(2+x)) vc<mint> H = composition_f_a_plus_bx_div_c_plus_dx<mint, 0>( G, mint(0), mint(1), mint(2), mint(1)); // print(G); // print(H); return H; } // void test() { // vc<mint> F = {1, 2, 3}; // sub2(F, 1); // } vc<mint> sub(vc<mint> F, ll N) { assert(len(F) == 2 * N + 2); /* FOR(N) { vc<mint> nxt(2 * N + 2); FOR(i, len(F)) { if (i == 0) continue; mint x = mint(i) * F[i]; nxt[i - 1] -= x; if (i + 1 < 2 * N + 2) nxt[i + 1] += x; } swap(F, nxt); } return F; */ /* F_{k+1}=(x^2-1)F_k' G_k(x):=F_k(x+1) G_{k+1}(x)=(x^2+2x)G_k(x) F_{k+1}(x)=(x^2+2x)F_k(x) に帰着 */ F = poly_taylor_shift<mint>(F, 1); F = sub2(F, N); F = poly_taylor_shift<mint>(F, -1); F.resize(N + 2); return F; } void solve() { LL(N, M); vc<mint> F0; ll LEN = 2 * N + 2; { VEC(mint, A, M); vc<mint> B = {1, 0, -1}; auto [Q, R] = poly_divmod(A, B); vc<mint> a = Q; a.insert(a.begin(), 0); FOR(i, 1, len(a)) a[i] *= inv<mint>(i); R.resize(2); mint b = (R[0] + R[1]) * inv<mint>(2); mint c = (R[0] - R[1]) * inv<mint>(2); a.resize(LEN); vc<mint> f = fps_exp(a); vc<mint> g = {1, -1}; g.resize(LEN); g = fps_pow_1<mint>(g, -b); vc<mint> h = {1, 1}; h.resize(LEN); h = fps_pow_1<mint>(h, c); f = convolution<mint>(f, g); f.resize(LEN); f = convolution<mint>(f, h); f.resize(LEN); F0 = f; } // F(x) = F0(x)G(x) vc<mint> G = {0, 1}; G.resize(LEN); G = fps_div(G, F0); G = sub(G, N); F0.resize(N + 2); G.resize(N + 2); // F(x)=F0(x)G(x) vc<mint> ANS = convolution<mint>(F0, G); ANS.resize(N + 2); print(ANS); } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }