結果
問題 | No.1080 Strange Squared Score Sum |
ユーザー |
![]() |
提出日時 | 2023-12-13 05:40:41 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3,658 ms / 5,000 ms |
コード長 | 16,078 bytes |
コンパイル時間 | 3,586 ms |
コンパイル使用メモリ | 190,164 KB |
最終ジャッジ日時 | 2025-02-18 10:40:42 |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")#include<iostream>#include<string>#include<cstdio>#include<vector>#include<cmath>#include<algorithm>#include<functional>#include<iomanip>#include<queue>#include<ciso646>#include<random>#include<map>#include<set>#include<bitset>#include<stack>#include<unordered_map>#include<unordered_set>#include<utility>#include<cassert>#include<complex>#include<numeric>#include<array>#include<chrono>using namespace std;//#define int long longtypedef long long ll;typedef unsigned long long ul;typedef unsigned int ui;//ll mod = 1;//constexpr ll mod = 998244353;constexpr ll mod = 1000000009;const int mod17 = 1000000007;const ll INF = (ll)mod17 * mod17;typedef pair<int, int>P;#define rep(i,n) for(int i=0;i<n;i++)#define per(i,n) for(int i=n-1;i>=0;i--)#define Rep(i,sta,n) for(int i=sta;i<n;i++)#define rep1(i,n) for(int i=1;i<=n;i++)#define per1(i,n) for(int i=n;i>=1;i--)#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)#define all(v) (v).begin(),(v).end()typedef pair<ll, ll> LP;using ld = double;typedef pair<ld, ld> LDP;const ld eps = 1e-10;const ld pi = acosl(-1.0);template<typename T>void chmin(T& a, T b) {a = min(a, b);}template<typename T>void chmax(T& a, T b) {a = max(a, b);}template<typename T>vector<T> vmerge(vector<T>& a, vector<T>& b) {vector<T> res;int ida = 0, idb = 0;while (ida < a.size() || idb < b.size()) {if (idb == b.size()) {res.push_back(a[ida]); ida++;}else if (ida == a.size()) {res.push_back(b[idb]); idb++;}else {if (a[ida] < b[idb]) {res.push_back(a[ida]); ida++;}else {res.push_back(b[idb]); idb++;}}}return res;}template<typename T>void cinarray(vector<T>& v) {rep(i, v.size())cin >> v[i];}template<typename T>void coutarray(vector<T>& v) {rep(i, v.size()) {if (i > 0)cout << " "; cout << v[i];}cout << "\n";}ll mod_pow(ll x, ll n, ll m = mod) {if (n < 0) {ll res = mod_pow(x, -n, m);return mod_pow(res, m - 2, m);}if (abs(x) >= m)x %= m;if (x < 0)x += m;//if (x == 0)return 0;ll res = 1;while (n) {if (n & 1)res = res * x % m;x = x * x % m; n >>= 1;}return res;}//mod should be <2^31struct modint {int n;modint() :n(0) { ; }modint(ll m) {if (m < 0 || mod <= m) {m %= mod; if (m < 0)m += mod;}n = m;}operator int() { return n; }};bool operator==(modint a, modint b) { return a.n == b.n; }bool operator<(modint a, modint b) { return a.n < b.n; }modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= (int)mod; return a; }modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += (int)mod; return a; }modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }modint operator+(modint a, modint b) { return a += b; }modint operator-(modint a, modint b) { return a -= b; }modint operator*(modint a, modint b) { return a *= b; }modint operator^(modint a, ll n) {if (n == 0)return modint(1);modint res = (a * a) ^ (n / 2);if (n % 2)res = res * a;return res;}ll inv(ll a, ll p) {return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);}modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }modint operator/=(modint& a, modint b) { a = a / b; return a; }const int max_n = 1 << 20;modint fact[max_n], factinv[max_n];void init_f() {fact[0] = modint(1);for (int i = 0; i < max_n - 1; i++) {fact[i + 1] = fact[i] * modint(i + 1);}factinv[max_n - 1] = modint(1) / fact[max_n - 1];for (int i = max_n - 2; i >= 0; i--) {factinv[i] = factinv[i + 1] * modint(i + 1);}}modint comb(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[b] * factinv[a - b];}modint combP(int a, int b) {if (a < 0 || b < 0 || a < b)return 0;return fact[a] * factinv[a - b];}ll gcd(ll a, ll b) {a = abs(a); b = abs(b);if (a < b)swap(a, b);while (b) {ll r = a % b; a = b; b = r;}return a;}template<typename T>void addv(vector<T>& v, int loc, T val) {if (loc >= v.size())v.resize(loc + 1, 0);v[loc] += val;}/*const int mn = 2000005;bool isp[mn];vector<int> ps;void init() {fill(isp + 2, isp + mn, true);for (int i = 2; i < mn; i++) {if (!isp[i])continue;ps.push_back(i);for (int j = 2 * i; j < mn; j += i) {isp[j] = false;}}}*///[,val)template<typename T>auto prev_itr(set<T>& st, T val) {auto res = st.lower_bound(val);if (res == st.begin())return st.end();res--; return res;}//[val,)template<typename T>auto next_itr(set<T>& st, T val) {auto res = st.lower_bound(val);return res;}using mP = pair<modint, modint>;mP operator+(mP a, mP b) {return { a.first + b.first,a.second + b.second };}mP operator+=(mP& a, mP b) {a = a + b; return a;}mP operator-(mP a, mP b) {return { a.first - b.first,a.second - b.second };}mP operator-=(mP& a, mP b) {a = a - b; return a;}LP operator+(LP a, LP b) {return { a.first + b.first,a.second + b.second };}LP operator+=(LP& a, LP b) {a = a + b; return a;}LP operator-(LP a, LP b) {return { a.first - b.first,a.second - b.second };}LP operator-=(LP& a, LP b) {a = a - b; return a;}mt19937 mt(time(0));const string drul = "DRUL";string senw = "SENW";//DRUL,or SENW//int dx[4] = { 1,0,-1,0 };//int dy[4] = { 0,1,0,-1 };//------------------------------------modint r2 = 291087696;modint ri = 430477711;void expr() {for (ll c = 1; c < mod; c++) {if (c * c % mod == mod - 1) {cout << "! -1 " << c << "\n";}if (c * c % mod == 2) {cout << "! 2 " << c << "\n";}}}int bsf(int x) {int res = 0;while (!(x & 1)) {res++; x >>= 1;}return res;}int ceil_pow2(int n) {int x = 0;while ((1 << x) < n) x++;return x;}int get_premitive_root(const ll& p) {int primitive_root = 0;if (!primitive_root) {primitive_root = [&]() {set<int> fac;int v = p - 1;for (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;if (v > 1) fac.insert(v);for (int g = 1; g < p; g++) {bool ok = true;for (auto i : fac) if (mod_pow(g, (p - 1) / i, p) == 1) { ok = false; break; }if (ok) return g;}return -1;}();}return primitive_root;}const array<ll, 3> ms = { 469762049,167772161,595591169 };const array<ll, 3> proots = { get_premitive_root(469762049),get_premitive_root(167772161),get_premitive_root(595591169) };using poly = vector<ll>;using polys = array<poly, 3>;void butterfly(polys& a) {int n = int(a[0].size());array<ll, 3> gs = proots;int h = ceil_pow2(n);static bool first = true;static ll sum_e[3][30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]if (first) {first = false;ll es[3][30], ies[3][30]; // es[i]^(2^(2+i)) == 1int cnt2[3];rep(i, 3)cnt2[i] = bsf(ms[i] - 1);ll e[3];rep(i, 3)e[i] = mod_pow(gs[i], (ms[i] - 1) >> cnt2[i], ms[i]);ll ie[3];rep(i, 3)ie[i] = mod_pow(e[i], ms[i] - 2, ms[i]);rep(j, 3) {for (int i = cnt2[j]; i >= 2; i--) {// e^(2^i) == 1es[j][i - 2] = e[j];ies[j][i - 2] = ie[j];e[j] *= e[j]; e[j] %= ms[j];ie[j] *= ie[j]; ie[j] %= ms[j];}}rep(j, 3) {ll now = 1;for (int i = 0; i < cnt2[j] - 2; i++) {sum_e[j][i] = es[j][i] * now % ms[j];now *= ies[j][i]; now %= ms[j];}}}for (int ph = 1; ph <= h; ph++) {int w = 1 << (ph - 1), p = 1 << (h - ph);ll now[3] = { 1,1,1 };for (int s = 0; s < w; s++) {int offset = s << (h - ph + 1);for (int i = 0; i < p; i++) {rep(j, 3) {auto l = a[j][i + offset];auto r = a[j][i + offset + p] * now[j] % ms[j];a[j][i + offset] = l + r; if (a[j][i + offset] >= ms[j])a[j][i + offset] -= ms[j];a[j][i + offset + p] = l - r; if (a[j][i + offset + p] < 0)a[j][i + offset + p] += ms[j];}}rep(j, 3) {now[j] *= sum_e[j][bsf(~(unsigned int)(s))];now[j] %= ms[j];}}}}void butterfly_inv(polys& a) {int n = int(a[0].size());array<ll, 3> gs = proots;int h = ceil_pow2(n);static bool first = true;static ll sum_ie[3][30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]if (first) {first = false;ll es[3][30], ies[3][30]; // es[i]^(2^(2+i)) == 1int cnt2[3];rep(i, 3)cnt2[i] = bsf(ms[i] - 1);ll e[3];rep(i, 3)e[i] = mod_pow(gs[i], (ms[i] - 1) >> cnt2[i], ms[i]);ll ie[3];rep(i, 3)ie[i] = mod_pow(e[i], ms[i] - 2, ms[i]);rep(j, 3) {for (int i = cnt2[j]; i >= 2; i--) {// e^(2^i) == 1es[j][i - 2] = e[j];ies[j][i - 2] = ie[j];e[j] *= e[j]; e[j] %= ms[j];ie[j] *= ie[j]; ie[j] %= ms[j];}}rep(j, 3) {ll now = 1;for (int i = 0; i < cnt2[j] - 2; i++) {sum_ie[j][i] = ies[j][i] * now % ms[j];now *= es[j][i]; now %= ms[j];}}}for (int ph = h; ph >= 1; ph--) {int w = 1 << (ph - 1), p = 1 << (h - ph);ll inow[3] = { 1,1,1 };for (int s = 0; s < w; s++) {int offset = s << (h - ph + 1);for (int i = 0; i < p; i++) {rep(j, 3) {auto l = a[j][i + offset];auto r = a[j][i + offset + p];a[j][i + offset] = l + r; if (a[j][i + offset] >= ms[j])a[j][i + offset] -= ms[j];a[j][i + offset + p] = (ms[j] + l - r) * inow[j] % ms[j];}}rep(j, 3) {inow[j] *= sum_ie[j][bsf(~(unsigned int)(s))];inow[j] %= ms[j];}}}}constexpr ll m0 = 469762049;constexpr ll m1 = 167772161;constexpr ll m2 = 595591169;const ll inv01 = mod_pow(m0, m1 - 2, m1);const ll inv012 = mod_pow(m0 * m1, m2 - 2, m2);ll calc(ll& a, ll& b, ll& c, const ll& p) {ll res = 0;ll x1 = a;ll x2 = (b - x1) * inv01;x2 %= m1; if (x2 < 0)x2 += m1;ll x3 = (c - x1 - x2 * m0) % m2 * inv012;x3 %= m2; if (x3 < 0)x3 += m2;res = x1 + x2 * m0 % p + x3 * m0 % p * m1;return res % p;}using poly2 = vector<modint>;vector<modint> multiply(poly2 _g, poly2 _h, const ll& p=mod) {poly g(_g.size()), h(_h.size());rep(i, g.size())g[i] = _g[i];rep(i, h.size())h[i] = _h[i];int n = g.size();int m = h.size();if (n == 0 || m == 0)return {};if (min(g.size(), h.size()) < 60) {vector<modint> res(g.size() + h.size() - 1);rep(i, g.size())rep(j, h.size()) {res[i + j] += g[i] * h[j];}return res;}int z = 1 << ceil_pow2(n + m - 1);g.resize(z); h.resize(z);polys gs, hs;rep(j, 3) {gs[j].resize(z);hs[j].resize(z);rep(i, z) {gs[j][i] = g[i] % ms[j];hs[j][i] = h[i] % ms[j];}}butterfly(gs);butterfly(hs);rep(j, 3)rep(i, z) {(gs[j][i] *= hs[j][i]) %= ms[j];}butterfly_inv(gs);rep(j, 3) {gs[j].resize(n + m - 1);ll iz = mod_pow(z, ms[j] - 2, ms[j]);rep(i, n + m - 1) {(gs[j][i] *= iz) %= ms[j];}}vector<modint> res(n + m - 1);rep(i, n + m - 1) {res[i] = calc(gs[0][i], gs[1][i], gs[2][i], p);}return res;}struct FormalPowerSeries :vector<modint> {using vector<modint>::vector;using fps = FormalPowerSeries;void shrink() {while (this->size() && this->back() == (modint)0)this->pop_back();}fps operator+(const fps& r)const { return fps(*this) += r; }fps operator+(const modint& v)const { return fps(*this) += v; }fps operator-(const fps& r)const { return fps(*this) -= r; }fps operator-(const modint& v)const { return fps(*this) -= v; }fps operator*(const fps& r)const { return fps(*this) *= r; }fps operator*(const modint& v)const { return fps(*this) *= v; }fps& operator+=(const fps& r) {if (r.size() > this->size())this->resize(r.size());rep(i, r.size())(*this)[i] += r[i];shrink();return *this;}fps& operator+=(const modint& v) {if (this->empty())this->resize(1);(*this)[0] += v;shrink();return *this;}fps& operator-=(const fps& r) {if (r.size() > this->size())this->resize(r.size());rep(i, r.size())(*this)[i] -= r[i];shrink();return *this;}fps& operator-=(const modint& v) {if (this->empty())this->resize(1);(*this)[0] -= v;shrink();return *this;}fps& operator*=(const fps& r) {if (this->empty() || r.empty())this->clear();else {poly2 ret = multiply(*this, r);*this = fps(all(ret));}shrink();return *this;}fps& operator*=(const modint& v) {for (auto& x : (*this))x *= v;shrink();return *this;}fps operator-()const {fps ret = *this;for (auto& v : ret)v = -v;return ret;}modint sub(modint x) {modint t = 1;modint res = 0;rep(i, (*this).size()) {res += t * (*this)[i];t *= x;}return res;}fps pre(int sz)const {fps ret(this->begin(), this->begin() + min((int)this->size(), sz));ret.shrink();return ret;}fps integral() const {const int n = (int)this->size();fps ret(n + 1);ret[0] = 0;for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / (modint)(i + 1);return ret;}fps inv(int deg = -1)const {const int n = this->size();if (deg == -1)deg = n;fps ret({ (modint)1 / (*this)[0] });for (int i = 1; i < deg; i <<= 1) {ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);}ret = ret.pre(deg);ret.shrink();return ret;}fps diff() const {const int n = (int)this->size();fps ret(max(0, n - 1));for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * (modint)i;return ret;}// F(0) must be 1fps log(int deg = -1) const {assert((*this)[0] == 1);const int n = (int)this->size();if (deg == -1) deg = n;return (this->diff() * this->inv(deg)).pre(deg - 1).integral();}// F(0) must be 0fps exp(int deg = -1)const {assert((*this)[0] == 0);const int n = (int)this->size();if (deg == -1)deg = n;fps ret = { 1 };for (int i = 1; i < deg; i <<= 1) {ret = (ret * (pre(i << 1) + 1 - ret.log(i << 1))).pre(i << 1);}//cout << "!!!! " << ret.size() << "\n";return ret.pre(deg);}fps div(fps g) {assert(g.size() && g.back() != (modint)0);fps f = *this;if (f.size() < g.size())return {};int dif = f.size() - g.size();reverse(all(f));reverse(all(g));g = g.inv(dif + 1);fps fg = f * g;fps ret(dif + 1);rep(i, fg.size()) {int id = i - dif;if (-dif <= id && id <= 0) {ret[-id] = fg[i];}}return ret;}fps divr(fps g) {fps ret = (*this) - g * (*this).div(g);ret.shrink();return ret;}};using fps = FormalPowerSeries;void solve() {int n; cin >> n;auto calc = [&](modint r,modint s) {fps f(n + 1);rep1(i, n) {f[i] = (modint)(i + 1) * (modint)(i + 1) * r;}f = f.exp(n+1);rep(i, f.size())f[i] *= s;return f;/*vector<modint> res(n + 1);res[0] = s;for (int i = 1; i <= n; i++) {modint c = (modint)(i + 1) * (modint)(i + 1);for (int j = n-i; j >= 0; j--) {modint pro = res[j];int t = 0;for (int k = j + i; k <= n; k += i) {pro *= r * c;t++;res[k] += pro * factinv[t];}}}return res;*/};modint t1 = ri;modint s1 = (modint)1 / r2 - (modint)1 / r2 * ri;modint t2 = -ri;modint s2 = (modint)1 / r2 + (modint)1 / r2 * ri;auto v1 = calc(t1,s1);auto v2 = calc(t2,s2);vector<modint> ans(n + 1);modint cc = (modint)1 / r2;rep(i, n + 1) {ans[i] = v1[i] + v2[i];ans[i] *= cc;ans[i] *= fact[n];}rep1(i, n)cout << ans[i] << "\n";}signed main() {ios::sync_with_stdio(false);cin.tie(0);//cout << fixed<<setprecision(10);init_f();//init();//while(true)//expr();//int t; cin >> t; rep(i, t)solve();return 0;}