結果

問題 No.2587 Random Walk on Tree
ユーザー 👑 NachiaNachia
提出日時 2023-12-15 02:47:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 38,699 bytes
コンパイル時間 5,245 ms
コンパイル使用メモリ 212,120 KB
実行使用メモリ 41,432 KB
最終ジャッジ日時 2024-09-27 12:58:09
合計ジャッジ時間 35,539 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include <queue>
#include <array>
#include <cmath>
#include <atcoder/modint>
using namespace std;
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(i64 i=0; i<(i64)(n); i++)
#define repr(i,n) for(i64 i=(i64)(n)-1; i>=0; i--)
const i64 INF = 1001001001001001001;
const char* yn(bool x){ return x ? "Yes" : "No"; }
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
template<typename A> using nega_queue = priority_queue<A,vector<A>,greater<A>>;
using Modint = atcoder::static_modint<998244353>;

#include <iterator>
#include <functional>

template<class Elem> struct vec;

template<class Iter>
struct seq_view{
    using Ref = typename std::iterator_traits<Iter>::reference;
    using Elem = typename std::iterator_traits<Iter>::value_type;
    Iter a, b;
    Iter begin() const { return a; }
    Iter end() const { return b; }
    int size() const { return (int)(b-a); }
    seq_view(Iter first, Iter last) : a(first), b(last) {}
    seq_view sort() const { std::sort(a, b); return *this; }
    Ref& operator[](int x){ return *(a+x); }
    template<class F = std::less<Elem>, class ret = vec<int>> ret sorti(F f = F()) const {
        ret x(size()); for(int i=0; i<size(); i++) x[i] = i;
        x().sort([&](int l, int r){ return f(a[l],a[r]); });
        return x;
    }
    template<class ret = vec<Elem>> ret col() const { return ret(begin(), end()); }
    template<class F = std::equal_to<Elem>, class ret = vec<std::pair<Elem, int>>>
    ret rle(F eq = F()) const {
        auto x = ret();
        for(auto& a : (*this)){
            if(x.size() == 0 || !eq(x[x.size()-1].first, a)) x.emp(a, 1); else x[x.size()-1].second++;
        } return x;
    }
    template<class F> seq_view sort(F f) const { std::sort(a, b, f); return *this; }
    Iter uni() const { return std::unique(a, b); }
    Iter lb(const Elem& x) const { return std::lower_bound(a, b, x); }
    Iter ub(const Elem& x) const { return std::upper_bound(a, b, x); }
    int lbi(const Elem& x) const { return lb(x) - a; }
    int ubi(const Elem& x) const { return ub(x) - a; }
    seq_view bound(const Elem& l, const Elem& r) const { return { lb(l), lb(r) }; }
    template<class F> Iter lb(const Elem& x, F f) const { return std::lower_bound(a, b, x, f); }
    template<class F> Iter ub(const Elem& x, F f) const { return std::upper_bound(a, b, x, f); }
    template<class F> Iter when_true_to_false(F f) const {
        if(a == b) return a;
        return std::lower_bound(a, b, *a,
            [&](const Elem& x, const Elem&){ return f(x); });
    }
    seq_view same(Elem x) const { return { lb(x), ub(x) }; }
    template<class F> auto map(F f) const {
        vec<typename Iter::value_type> r;
        for(auto& x : *this) r.emp(f(x));
        return r;
    }
    Iter max() const { return std::max_element(a, b); }
    Iter min() const { return std::min_element(a, b); }
    template<class F = std::less<Elem>>
    Iter min(F f) const { return std::min_element(a, b, f); }
    seq_view rev() const { std::reverse(a, b); return *this; }
};

template<class Elem>
struct vec {
    using Base = typename std::vector<Elem>;
    using Iter = typename Base::iterator;
    using CIter = typename Base::const_iterator;
    using View = seq_view<Iter>;
    using CView = seq_view<CIter>;

    vec(){}
    explicit vec(int n, const Elem& value = Elem()) : a(0<n?n:0, value) {}
    template <class I2> vec(I2 first, I2 last) : a(first, last) {}
    vec(std::initializer_list<Elem> il) : a(std::move(il)) {}
    vec(Base b) : a(std::move(b)) {}
    operator Base() const { return a; }

    Iter begin(){ return a.begin(); }
    CIter begin() const { return a.begin(); }
    Iter end(){ return a.end(); }
    CIter end() const { return a.end(); }
    int size() const { return a.size(); }
    bool empty() const { return a.empty(); }
    Elem& back(){ return a.back(); }
    const Elem& back() const { return a.back(); }
    vec sortunied(){ vec x = *this; x().sort(); x.a.erase(x().uni(), x.end()); return x; }
    Iter operator()(int x){ return a.begin() + x; }
    CIter operator()(int x) const { return a.begin() + x; }
    View operator()(int l, int r){ return { (*this)(l), (*this)(r) }; }
    CView operator()(int l, int r) const { return { (*this)(l), (*this)(r) }; }
    View operator()(){ return (*this)(0,size()); }
    CView operator()() const { return (*this)(0,size()); }
    Elem& operator[](int x){ return a[x]; }
    const Elem& operator[](int x) const { return a[x]; }
    Base& operator*(){ return a; }
    const Base& operator*() const { return a; }
    vec& push(Elem args){
        a.push_back(std::move(args));
        return *this;
    }
    template<class... Args>
    vec& emp(Args &&... args){
        a.emplace_back(std::forward<Args>(args) ...);
        return *this;
    }
    template<class Range>
    vec& app(Range& x){ for(auto& v : a) emp(v); }
    Elem pop(){
        Elem x = std::move(a.back());
        a.pop_back(); return x;
    }
    bool operator==(const vec& r) const { return a == r.a; }
    bool operator!=(const vec& r) const { return a != r.a; }
    bool operator<(const vec& r) const { return a < r.a; }
    bool operator<=(const vec& r) const { return a <= r.a; }
    bool operator>(const vec& r) const { return a > r.a; }
    bool operator>=(const vec& r) const { return a >= r.a; }
    vec<vec<Elem>> pile(int n) const { return vec<vec<Elem>>(n, *this); }
    template<class F> vec& filter(F f){
        int p = 0;
        for(int q=0; q<size(); q++) if(f(a[q])) std::swap(a[p++],a[q]);
        a.resize(p); return *this;
    }
private: Base a;
};

template<class IStr, class U, class T>
IStr& operator>>(IStr& is, vec<std::pair<U,T>>& v){ for(auto& x:v){ is >> x.first >> x.second; } return is; }
template<class IStr, class T>
IStr& operator>>(IStr& is, vec<T>& v){ for(auto& x:v){ is >> x; } return is; }
template<class OStr, class T>
OStr& operator<<(OStr& os, const vec<T>& v){
    for(int i=0; i<v.size(); i++){
        if(i){ os << ' '; } os << v[i];
    } return os;
}
#include <cassert>

namespace nachia{

template<unsigned int MOD>
struct PrimitiveRoot{
    using u64 = unsigned long long;
    static constexpr u64 powm(u64 a, u64 i) {
        u64 res = 1, aa = a;
        while(i){
            if(i & 1) res = res * aa % MOD;
            aa = aa * aa % MOD;
            i /= 2;
        }
        return res;
    }
    static constexpr bool ExamineVal(unsigned int g){
        unsigned int t = MOD - 1;
        for(u64 d=2; d*d<=t; d++) if(t % d == 0){
            if(powm(g, (MOD - 1) / d) == 1) return false;
            while(t % d == 0) t /= d;
        }
        if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false;
        return true;
    }
    static constexpr unsigned int GetVal(){
        for(unsigned int x=2; x<MOD; x++) if(ExamineVal(x)) return x;
        return 0;
    }
    static const unsigned int val = GetVal();
};

} // namespace nachia

namespace nachia{

template<class Modint>
class Comb{
private:
    static constexpr int MOD = Modint::mod();
    std::vector<Modint> F;
    std::vector<Modint> iF;
public:
    void extend(int newN){
        int prevN = (int)F.size() - 1;
        if(newN >= MOD) newN = MOD - 1;
        if(prevN >= newN) return;
        F.resize(newN+1);
        iF.resize(newN+1);
        for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i);
        iF[newN] = F[newN].inv();
        for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i);
    }
    Comb(int n = 1){
        F.assign(2, Modint(1));
        iF.assign(2, Modint(1));
        extend(n);
    }
    Modint factorial(int n) const { return F[n]; }
    Modint invFactorial(int n) const { return iF[n]; }
    Modint invOf(int n) const { return iF[n] * F[n-1]; }
    Modint comb(int n, int r) const {
        if(n < 0 || n < r || r < 0) return Modint(0);
        return F[n] * iF[r] * iF[n-r];
    }
    Modint invComb(int n, int r) const {
        if(n < 0 || n < r || r < 0) return Modint(0);
        return iF[n] * F[r] * F[n-r];
    }
    Modint perm(int n, int r) const {
        if(n < 0 || n < r || r < 0) return Modint(0);
        return F[n] * iF[n-r];
    }
    Modint invPerm(int n, int r) const {
        if(n < 0 || n < r || r < 0) return Modint(0);
        return iF[n] * F[n-r];
    }
    Modint operator()(int n, int r) const { return comb(n,r); }
};

} // namespace nachia

namespace nachia{

int Popcount(unsigned long long c) noexcept {
#ifdef __GNUC__
    return __builtin_popcountll(c);
#else
    c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3));
    c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5));
    c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17));
    c = (c * (~0ull/257)) >> 56;
    return c;
#endif
}

// please ensure x != 0
int MsbIndex(unsigned long long x) noexcept {
#ifdef __GNUC__
    return 63 - __builtin_clzll(x);
#else
    using u64 = unsigned long long;
    int q = (n >> 32) ? 32 : 0;
    auto m = n >> q;
    constexpr u64 hi = 0x8888'8888;
    constexpr u64 mi = 0x1111'1111;
    m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35;
    m = (((m | ~(hi - (n & ~hi))) & hi) * mi) >> 31;
    q += (m & 0xf) << 2;
    q += 0x3333'3333'2222'1100 >> (((n >> q) & 0xf) << 2) & 0xf
    return q;
#endif
}

// please ensure x != 0
int LsbIndex(unsigned long long x) noexcept {
#ifdef __GNUC__
    return __builtin_ctzll(x);
#else
    return MsbIndex(x & -x);
#endif
}

}


namespace nachia {

template<class mint>
struct NttInterface{

template<class Iter>
void Butterfly(Iter, int) const {}

template<class Iter>
void IButterfly(Iter, int) const {}

template<class Iter>
void BitReversal(Iter a, int N) const {
    for(int i=0, j=0; j<N; j++){
        if(i < j) std::swap(a[i], a[j]);
        for(int k = N>>1; k > (i^=k); k>>=1);
    }
}

};

} // namespace nachia

namespace nachia{
    
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

template <class mint>
struct NttFromAcl : NttInterface<mint> {

using u32 = unsigned int;
using u64 = unsigned long long;
    
static int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (u32)(n)) x++;
    return x;
}

struct fft_info {
    static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val;
    static constexpr int rank2 = bsf_constexpr(mint::mod()-1);
    std::array<mint, rank2+1> root;
    std::array<mint, rank2+1> iroot;

    std::array<mint, std::max(0, rank2-1)> rate2;
    std::array<mint, std::max(0, rank2-1)> irate2;

    std::array<mint, std::max(0, rank2-2)> rate3;
    std::array<mint, std::max(0, rank2-2)> irate3;

    fft_info(){
        root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for(int i=rank2-1; i>=0; i--){
            root[i] = root[i+1] * root[i+1];
            iroot[i] = iroot[i+1] * iroot[i+1];
        }
        mint prod = 1, iprod = 1;
        for(int i=0; i<=rank2-2; i++){
            rate2[i] = root[i+2] * prod;
            irate2[i] = iroot[i+2] * iprod;
            prod *= iroot[i+2];
            iprod *= root[i+2];
        }
        prod = 1; iprod = 1;
        for(int i=0; i<=rank2-3; i++){
            rate3[i] = root[i+3] * prod;
            irate3[i] = iroot[i+3] * iprod;
            prod *= iroot[i+3];
            iprod *= root[i+3];
        }
    }
};

template<class RandomAccessIterator>
void Butterfly(RandomAccessIterator a, int n) const {
    int h = ceil_pow2(n);

    static const fft_info info;

    int len = 0;
    while(len < h){
        if(h-len == 1){
            int p = 1 << (h-len-1);
            mint rot = 1;
            for(int s=0; s<(1<<len); s++){
                int offset = s << (h-len);
                for(int i=0; i<p; i++){
                    auto l = a[i+offset];
                    auto r = a[i+offset+p] * rot;
                    a[i+offset] = l+r;
                    a[i+offset+p] = l-r;
                }
                if(s+1 != (1<<len)) rot *= info.rate2[LsbIndex(~(u32)(s))];
            }
            len++;
        } else {
            int p = 1 << (h-len-2);
            mint rot = 1, imag = info.root[2];
            for(int s=0; s<(1<<len); s++){
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                int offset = s << (h-len);
                for(int i=0; i<p; i++){
                    auto mod2 = 1ULL * mint::mod() * mint::mod();
                    auto a0 = 1ULL * a[i+offset].val();
                    auto a1 = 1ULL * a[i+offset+p].val() * rot.val();
                    auto a2 = 1ULL * a[i+offset+2*p].val() * rot2.val();
                    auto a3 = 1ULL * a[i+offset+3*p].val() * rot3.val();
                    auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val();
                    auto na2 = mod2 - a2;
                    a[i+offset] = a0 + a2 + a1 + a3;
                    a[i+offset+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3));
                    a[i+offset+2*p] = a0 + na2 + a1na3imag;
                    a[i+offset+3*p] = a0 + na2 + (mod2 - a1na3imag);
                }
                if(s+1 != (1<<len)) rot *= info.rate3[LsbIndex(~(u32)(s))];
            }
            len += 2;
        }
    }
}

template<class RandomAccessIterator>
void IButterfly(RandomAccessIterator a, int n) const {
    int h = ceil_pow2(n);

    static const fft_info info;
    constexpr int MOD = mint::mod();

    int len = h;
    while(len){
        if(len == 1){
            int p = 1 << (h-len);
            mint irot = 1;
            for(int s=0; s<(1<<(len-1)); s++){
                int offset = s << (h-len+1);
                for(int i=0; i<p; i++){
                    auto l = a[i+offset];
                    auto r = a[i+offset+p];
                    a[i+offset] = l+r;
                    a[i+offset+p] = (u64)(MOD + l.val() - r.val()) * irot.val();
                }
                if(s+1 != (1<<(len-1))) irot *= info.irate2[LsbIndex(~(u32)(s))];
            }
            len--;
        } else {
            int p = 1 << (h-len);
            mint irot = 1, iimag = info.iroot[2];
            for(int s=0; s<(1<<(len-2)); s++){
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                int offset = s << (h-len+2);
                for(int i=0; i<p; i++){
                    auto a0 = 1ULL * a[i+offset+0*p].val();
                    auto a1 = 1ULL * a[i+offset+1*p].val();
                    auto a2 = 1ULL * a[i+offset+2*p].val();
                    auto a3 = 1ULL * a[i+offset+3*p].val();

                    auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val()).val();

                    a[i+offset] = a0 + a1 + a2 + a3;
                    a[i+offset+1*p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val();
                    a[i+offset+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val();
                    a[i+offset+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val();
                }
                if(s+1 != (1<<(len-2))) irot *= info.irate3[LsbIndex(~(u32)(s))];
            }
            len -= 2;
        }
    }
}

};

} // namespace nachia

namespace nachia {

template<class Elem, class NttInst = NttFromAcl<Elem>>
struct FpsNtt {
public:
    using Fps = FpsNtt;
    using ElemTy = Elem;
    static constexpr unsigned int MOD = Elem::mod();
    static constexpr int CONV_THRES = 30;
    static const NttInst nttInst;
    static const unsigned int zeta = nachia::PrimitiveRoot<MOD>::GetVal();
private:
    using u32 = unsigned int;
    static Elem ZeroElem() noexcept { return Elem(0); }
    static Elem OneElem() noexcept { return Elem(1); }
    static Comb<Elem> comb;
    std::vector<Elem> a;
    int RSZ(int& sz) const { return sz = (sz < 0 ? size() : sz); }
public:

    int size() const noexcept { return a.size(); }
    Elem& operator[](int x) noexcept { return a[x]; }
    const Elem& operator[](int x) const noexcept { return a[x]; }
    Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); }
    static Comb<Elem>& GetComb() { return comb; }
    static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); }
    Fps move(){ return std::move(*this); }
    Fps& set(int i, Elem c){ a[i] = c; return *this; }

    Fps& removeLeadingZeros(){
        int newsz = size();
        while(newsz && a[newsz-1].val() == 0) newsz--;
        a.resize(newsz);
        if((int)a.capacity() / 4 > newsz) a.shrink_to_fit();
        return *this;
    }

    FpsNtt(){}
    FpsNtt(int sz) : a(sz, ZeroElem()) {}
    FpsNtt(int sz, Elem e) : a(sz, e) {}
    FpsNtt(std::vector<Elem>&& src) : a(std::move(src)) {}
    FpsNtt(const std::vector<Elem>& src) : a(src) {}
    
    Fps& ntt() {
        capSize(BestNttSize(size()));
        nttInst.Butterfly(a.begin(), size());
        return *this;
    }
    Fps& intt() {
        nttInst.IButterfly(a.begin(), a.size());
        return times(Elem::raw(size()).inv());
    }
    Fps nttDouble(Fps vanilla) const {
        int n = size();
        assert(n == (n&-n)); // n is a power of 2
        Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n*2));
        Elem qq = OneElem();
        for(int i=0; i<n; i++){ vanilla[i] *= qq; qq *= q; }
        vanilla.ntt();
        Fps res = clip(0, n*2);
        for(int i=0; i<n; i++) res[n+i] = vanilla[i];
        return res;
    }
    Fps nttDouble() const { return nttDouble(clip().intt().move()); }

    // Fps res(resSz);
    // for(int j=0; j<resSz-destL && j+srcL < srcR; j++) res[j+destL] = a.getCoeff(j+srcL)
    // if srcR is unspecified -> srcR = max(srcL, size());
    // if resSz is unspecified -> resSz = destL + srcR - srcL
    Fps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const {
        srcR = RSZ(srcR);
        if(resSz < 0) resSz = destL + srcR - srcL;
        int rj = std::min(std::min(srcR, size()) - srcL, resSz - destL);
        Fps res(resSz);
        for(int j=std::max(0, -srcL); j<rj; j++) res[j+destL] = a[j+srcL];
        return res;
    }
    Fps clip() const { return *this; }

    Fps& capSize(int l, int r) {
        if(r <= (int)size()) a.resize(r);
        if(size() <= l) a.resize(l, ZeroElem());
        return *this;
    }
    Fps& capSize(int z){ a.resize(RSZ(z), ZeroElem()); return *this; }
    Fps& times(Elem x){ for(int i=0; i<size(); i++){ a[i] *= x; } return *this; }
    Fps& timesFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.factorial(i); } return *this; }
    Fps& timesInvFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.invFactorial(i); } return *this; }
    Fps& clrRange(int l, int r){ for(int i=l; i<r; i++){ a[i] = ZeroElem(); } return *this; }
    Fps& negate(){ for(auto& e : a){ e = -e; } return *this; }
    Fps& mulEach(const Fps& other, int maxi = -1){
        maxi = std::min(RSZ(maxi), std::min(size(), other.size()));
        for(int i=0; i<maxi; i++) a[i] *= other[i];
        return *this;
    }
    Fps& reverse(int sz = -1){ RSZ(sz); std::reverse(a.begin(), a.begin() + sz); return *this; }

    static Fps convolution(const Fps& a, const Fps& b, int sz = -1){
        if(std::min(a.size(), b.size()) <= CONV_THRES){
            if(a.size() > b.size()) return convolution(b, a, sz);
            if(sz < 0) sz = std::max(0, a.size() + b.size() - 1);
            std::vector<Elem> res(sz);
            for(int i=0; i<a.size(); i++) for(int j=0; j<b.size() && i+j<sz; j++) res[i+j] += a[i] * b[j];
            return res;
        }
        int Z = BestNttSize(a.size() + b.size() - 1);
        return a.clip(0, Z).ntt().mulEach(b.clip(0, Z).ntt()).intt().capSize(sz).move();
    }
    Fps convolve(const Fps& r, int sz = -1) const { return convolution(*this, r, sz); }
    
    //   1
    // ----- = 1 + f + f^2 + f^3 + ...
    //  1-f
    Fps powerSum(int sz) const {
        RSZ(sz);
        if(sz == 0) return {};
        int q = std::min(sz, 32);
        Fps x = Fps(q).set(0, OneElem()).move();
        for(int i=1; i<q; i++) for(int j=1; j<=std::min(i,(int)a.size()-1); j++) x[i] += x[i-j] * a[j];
        while(x.size() < sz){
            int hN = x.size(), N = hN*2;
            Fps a = x.clip(0, N).ntt().move();
            Fps b = clip(0, N).ntt().mulEach(a).intt().clrRange(0,hN).ntt().mulEach(a).intt().move();
            for(int i=0; i<hN; i++) b[i] = x[i];
            std::swap(b, x);
        }
        return x.capSize(sz).move();
    }

    Fps inv(int sz = -1) const {
        RSZ(sz);
        Elem iA0 = a[0].inv();
        return clip(0, std::min(sz, size())).times(-iA0).set(0, ZeroElem()).powerSum(sz).times(iA0).move();
    }
    
    Fps& difference(){
        if(size() == 0) return *this;
        for(int i=0; i+1<size(); i++) a[i] = a[i+1] * Elem::raw(i+1);
        return capSize(size()-1);
    }
    Fps& integral(){
        if(size() == 0) return capSize(1);
        capSize(size()+1);
        comb.extend(size());
        for(int i=size()-1; i>=1; i--) a[i] = a[i-1] * comb.invOf(i);
        return set(0, ZeroElem());
    }
    Fps& EgfToOgf(){
        comb.extend(size());
        for(int i=0; i<size(); i++) a[i] *= comb.factorial(i);
        return *this;
    }
    Fps& OgfToEgf(){
        comb.extend(size());
        for(int i=0; i<size(); i++) a[i] *= comb.invFactorial(i);
        return *this;
    }
    
    Fps log(int sz = -1){
        RSZ(sz);
        assert(sz != 0);
        assert(a[0].val() == 1);
        return convolution(inv(sz), clip().difference(), sz-1).integral();
    }

    Fps exp(int sz = -1){
        RSZ(sz);
        Fps res = Fps(1).set(0, OneElem());
        while(res.size() < sz){
            auto z = res.size();
            auto tmp = res.capSize(z*2).log().set(0, -OneElem()).move();
            for(int i=0; i<z*2 && i<size(); i++) tmp[i] -= a[i];
            auto resntt = res.clip().ntt().mulEach(tmp.ntt()).intt().move();
            for(int i=z; i<z*2; i++) res[i] = -resntt[i];
        }
        return res.capSize(0, sz).move();
    }
    
    Fps pow(unsigned long long k, int sz = -1){
        int n = RSZ(sz);
        if(k == 0) return Fps(n).set(0, OneElem()).move();
        int ctz = 0;
        while(ctz<n && a[ctz].val() == 0) ctz++;
        if((unsigned long long)ctz >= (n-1) / k + 1) return Fps(n);
        Elem a0 = a[ctz];
        return clip(ctz, ctz+n-ctz*k).times(a0.inv()).log().times(Elem(k)).exp().times(a0.pow(k)).clip(0, -1, ctz*k);
    }

    auto begin(){ return a.begin(); }
    auto end(){ return a.end(); }
    auto begin() const { return a.begin(); }
    auto end() const { return a.end(); }

    std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const {
        std::string res = beg;
        bool f = false;
        for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); }
        res += en;
        return res;
    }

    std::vector<Elem> getVectorMoved(){ return std::move(a); }

    Fps& operator+=(const Fps& r){
        capSize(std::max(size(), r.size()));
        for(int i=0; i<r.size(); i++) a[i] += r[i];
        return *this;
    }
    Fps& operator-=(const Fps& r){
        capSize(std::max(size(), r.size()));
        for(int i=0; i<r.size(); i++) a[i] -= r[i];
        return *this;
    }
    Fps operator+(const Fps& r) const { return (clip(0, std::max(size(), r.size())) += r).move(); }
    Fps operator-(const Fps& r) const { return (clip(0, std::max(size(), r.size())) -= r).move(); }
    Fps operator-() const { return (clip().negate()).move(); }
    Fps operator*(const Fps& r) const { return convolve(r).removeLeadingZeros().move(); }
    Fps& operator*=(const Fps& r){ return (*this) = operator*(r); }
    Fps& operator*=(Elem m){ return times(m); }
    Fps operator*(Elem m) const { return (clip() *= m).move(); }

    Elem eval(Elem x) const {
        Elem res = 0;
        for(int i=size()-1; i>=0; i--) res = res * x + a[i];
        return res;
    }
};

template<class Elem, class NttInst> Comb<Elem> FpsNtt<Elem, NttInst>::comb;
template<class Elem, class NttInst> const NttInst FpsNtt<Elem, NttInst>::nttInst;

} // namespace nachia


namespace nachia{

template<class Elem>
class CsrArray{
public:
    struct ListRange{
        using iterator = typename std::vector<Elem>::iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        Elem& operator[](int i) const { return begi[i]; }
    };
    struct ConstListRange{
        using iterator = typename std::vector<Elem>::const_iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        const Elem& operator[](int i) const { return begi[i]; }
    };
private:
    int m_n;
    std::vector<Elem> m_list;
    std::vector<int> m_pos;
public:
    CsrArray() : m_n(0), m_list(), m_pos() {}
    static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
        CsrArray res;
        res.m_n = n;
        std::vector<int> buf(n+1, 0);
        for(auto& [u,v] : items){ ++buf[u]; }
        for(int i=1; i<=n; i++) buf[i] += buf[i-1];
        res.m_list.resize(buf[n]);
        for(int i=(int)items.size()-1; i>=0; i--){
            res.m_list[--buf[items[i].first]] = std::move(items[i].second);
        }
        res.m_pos = std::move(buf);
        return res;
    }
    static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
        CsrArray res;
        res.m_n = pos.size() - 1;
        res.m_list = std::move(list);
        res.m_pos = std::move(pos);
        return res;
    }
    ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    int size() const { return m_n; }
    int fullSize() const { return (int)m_list.size(); }
};

} // namespace nachia

namespace nachia{


struct Graph {
public:
    struct Edge{
        int from, to;
        void reverse(){ std::swap(from, to); }
    };
    using Base = std::vector<std::pair<int, int>>;
    Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
    Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
        m_e.resize(edges.size());
        for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
    }
    template<class Cin>
    static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
        Graph res(n, undirected, m);
        for(int i=0; i<m; i++){
            int u, v; cin >> u >> v;
            res[i].from = u - offset;
            res[i].to = v - offset;
        }
        return res;
    }
    int numVertices() const noexcept { return m_n; }
    int numEdges() const noexcept { return int(m_e.size()); }
    int addNode() noexcept { return m_n++; }
    int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
    Edge& operator[](int ei) noexcept { return m_e[ei]; }
    const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
    Edge& at(int ei) { return m_e.at(ei); }
    const Edge& at(int ei) const { return m_e.at(ei); }
    auto begin(){ return m_e.begin(); }
    auto end(){ return m_e.end(); }
    auto begin() const { return m_e.begin(); }
    auto end() const { return m_e.end(); }
    bool isUndirected() const noexcept { return m_isUndir; }
    void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
    void contract(int newV, const std::vector<int>& mapping){
        assert(numVertices() == int(mapping.size()));
        for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
        for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
        m_n = newV;
    }
    std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
        int n = numVertices();
        assert(n == int(mapping.size()));
        for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
        std::vector<int> indexV(n), newV(num);
        for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
        std::vector<Graph> res; res.reserve(num);
        for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
        for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
        return res;
    }
    CsrArray<int> getEdgeIndexArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(int i=0; i<numEdges(); i++){
            auto e = operator[](i);
            src.emplace_back(e.from, i);
            if(undirected) src.emplace_back(e.to, i);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
    CsrArray<int> getAdjacencyArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(auto e : m_e){
            src.emplace_back(e.from, e.to);
            if(undirected) src.emplace_back(e.to, e.from);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
    int m_n;
    std::vector<Edge> m_e;
    bool m_isUndir;
};

} // namespace nachia
#include <atcoder/convolution>

namespace nachia{

// ax + by = gcd(a,b)
// return ( x, - )
std::pair<long long, long long> ExtGcd(long long a, long long b){
    long long x = 1, y = 0;
    while(b){
        long long u = a / b;
        std::swap(a-=b*u, b);
        std::swap(x-=y*u, y);
    }
    return std::make_pair(x, a);
}

} // namespace nachia

namespace nachia{

class DynamicModSupplier{
    using u64 = unsigned long long;
    using u128 = unsigned __int128;
    using Int = unsigned int;
private:
    u64 imod;
    Int mod;
    // atcoder library
    u64 reduce2(u64 z) const noexcept {
        // atcoder library
#ifdef _MSC_VER
        u64 x; _umul128(z, im, &x);
#else
        u64 x = (u64)(((u128)(z)*imod) >> 64);
#endif
        return z - x * mod;
    }
    Int reduce(u64 z) const noexcept {
        Int v = reduce2(z);
        if(mod <= v) v += mod;
        return v;
    }
public:
    DynamicModSupplier(unsigned int MOD = 998244353) : mod(MOD) {
        assert(2 <= MOD);
        assert(MOD < (1u << 31));
        imod = (u64)(-1) / mod + 1;
    }
    Int add(Int a, Int b) const { a += b; if(a >= mod){ a -= mod; } return a; }
    Int sub(Int a, Int b) const { a -= b; if(a >= mod){ a += mod; } return a; }
    Int mul(Int a, Int b) const { return reduce((u64)a * b); }
    Int muladd(Int a, Int b, Int c) const { return reduce((u64)a * b + c); }
    Int inv(Int a) const {
        Int v = ExtGcd(a, mod).first;
        return (v < mod) ? v : (v + mod);
    }
    Int pow(Int a, u64 i) const {
        Int r = a, ans = 1;
        while(i){
            if(i & 1) ans = mul(ans, r);
            i /= 2;
            r = mul(r, r);
        }
        return ans;
    }
    Int getMod() const { return mod; }
};

} // namespace nachia

namespace nachia{

template<class FinishType>
struct GarnerMod{
    using Int = unsigned int;
    using IntLong = unsigned long long;
    std::vector<Int> mods;
    std::vector<DynamicModSupplier> dynmods;
    std::vector<std::vector<Int>> table_coeff;
    std::vector<Int> table_coeffinv;

    void precalc(std::vector<Int> new_mods){
        mods = std::move(new_mods);
        dynmods.resize(mods.size());
        for(size_t i=0; i<mods.size(); i++) dynmods[i] = DynamicModSupplier(mods[i]);
        int nmods = mods.size();
        table_coeff.assign(nmods+1, std::vector<Int>(nmods, 1));
        for(int j=0; j<nmods; j++){
            for(int k=0; k<nmods; k++) table_coeff[j+1][k] = table_coeff[j][k];
            for(int k=j+1; k<nmods; k++) table_coeff[j+1][k] = dynmods[k].mul(table_coeff[j+1][k], mods[j] % mods[k]);
        }
        table_coeffinv.resize(nmods);
        for(int i=0; i<nmods; i++) table_coeffinv[i] = dynmods[i].inv(table_coeff[i][i]);
    }

    FinishType calc(const std::vector<Int>& x){
        int nmods = mods.size();
        std::vector<Int> table_const(nmods);
        FinishType res = 0;
        FinishType res_coeff = 1;
        for(int j=0; j<nmods; j++){
            Int t = dynmods[j].mul(dynmods[j].sub(x[j], table_const[j]), table_coeffinv[j]);
            for(int k=j+1; k<nmods; k++){
                table_const[k] = dynmods[k].muladd(t, table_coeff[j][k], table_const[k]);
            }
            res += res_coeff * FinishType(t);
            res_coeff *= mods[j];
        }
        return res;
    }

    std::vector<FinishType> calc(std::vector<std::vector<Int>> x){
        int n = x[0].size(), m = x.size();
        std::vector<FinishType> res(n);
        std::vector<Int> buf(m);
        for(int i=0; i<n; i++){
            for(int j=0; j<m; j++) buf[j] = x[j][i];
            res[i] = calc(buf);
        }
        return res;
    }
};

} // namespace nachia

namespace nachia{

template<class Modint, unsigned int nttmod> std::vector<unsigned int>
    PartConvolution(std::vector<Modint> A, std::vector<Modint> B)
{
    std::vector<atcoder::static_modint<nttmod>> AA(A.size());
    for(std::size_t i=0; i<A.size(); i++) AA[i] = A[i].val();
    std::vector<atcoder::static_modint<nttmod>> BB(B.size());
    for(std::size_t i=0; i<B.size(); i++) BB[i] = B[i].val();
    auto AB = atcoder::convolution(AA, BB);
    std::vector<unsigned int> res(AB.size());
    for(std::size_t i=0; i<AB.size(); i++) res[i] = AB[i].val();
    return res;
}

template<class Modint>
std::vector<Modint> Convolution(std::vector<Modint> A, std::vector<Modint> B){
    auto Q1 = PartConvolution<Modint, 998244353>(A, B);
    auto Q2 = PartConvolution<Modint, 897581057>(A, B);
    auto Q3 = PartConvolution<Modint, 880803841>(A, B);
    GarnerMod<Modint> garner;
    garner.precalc({ 998244353, 897581057, 880803841 });
    return garner.calc({ Q1, Q2, Q3 });
}

} // namespace nachia

namespace nachia{

template<class Modint>
Modint KthTermOfRationalGF(
    std::vector<Modint> denom,
    std::vector<Modint> numer,
    unsigned long long K
){
    assert(denom.size() != 0);
    assert(denom.size() == numer.size());
    assert(denom[0].val() != 0);
    int n = (int)denom.size();
    while(K != 0){
        auto Qn = denom;
        Qn.push_back(Modint(0));
        for(int i=1; i<n; i+=2) Qn[i] = -Qn[i];
        int f = K % 2;
        denom = Convolution(denom, Qn);
        for(int i=0; i<n; i++) denom[i] = denom[i*2];
        denom.resize(n);
        numer = Convolution(numer, Qn);
        for(int i=0; i<n; i++) numer[i] = numer[i*2+f];
        numer.resize(n);
        K /= 2;
    }
    return numer[0] / denom[0];
}

// divisor of fractional representation
//   and first terms
template<class Modint>
Modint KthTermOfLinearRecurrence(
    std::vector<Modint> denom,
    std::vector<Modint> firstTerms,
    unsigned long long K
){
    assert(denom.size() == firstTerms.size());
    auto numer = Convolution(firstTerms, denom);
    numer.resize(denom.size());
    return KthTermOfRationalGF(std::move(denom), std::move(numer), K);
}

} // namespace nachia
using Fps = nachia::FpsNtt<Modint>;

struct FracX {
    Fps p1, px, q1, qx;
    void negate(){ p1.negate(); px.negate(); q1.negate(); qx.negate(); }
};
struct Frac {
    Fps p, q;
    void negate(){ p.negate(); q.negate(); }
};

FracX operator+(const FracX& l, const Frac& r){
    return { l.p1 * r.q + l.q1 * r.p, l.px * r.q + l.qx * r.p, l.q1 * r.q, l.qx * r.q };
}
Frac operator+(const Frac& l, const Frac& r){
    return { l.p * r.q + l.q * r.p, l.q * r.q };
}
FracX substitute(const FracX& f, const FracX& x){
    return {
        f.p1 * x.q1 + f.px * x.p1,
        f.p1 * x.qx + f.px * x.px,
        f.q1 * x.q1 + f.qx * x.p1,
        f.q1 * x.qx + f.qx * x.px,
    };
}

void testcase(){
    int N,M,S,T; cin >> N >> M >> S >> T; S--; T--;
    int Tp = T;
    if(S == Tp) Tp = 0;
    if(S == Tp) Tp = 1;
    auto tree = nachia::Graph::Input(cin, N, true, N-1, 1);
    auto adj = tree.getAdjacencyArray();
    vector<int> parent(N, -1);
    vector<int> bfs = { S };
    vector<int> dsize(N, 1);
    rep(i,N){
        int v = bfs[i];
        for(int w : adj[v]) if(parent[v] != w){
            bfs.push_back(w);
            parent[w] = v;
        }
    }
    repr(i,N){
        int v = bfs[i];
        if(i != 0) dsize[parent[v]] += dsize[v];
    }
    FracX fBase;
    fBase.p1 = Fps(3).set(2,1).move();
    fBase.q1 = Fps(1).set(0,1).move();
    fBase.qx = Fps(1).set(0,-1).move();
    for(auto& e : tree) if(parent[e.to] != e.from) e.reverse();
    adj = tree.getAdjacencyArray(false);
    auto findFrac = [&](auto& findFrac, int v) -> Frac {
        vector<FracX> buf;
        buf.push_back(fBase);
        int p = v;
        while(true){
            if(adj[p].size() == 0) break;
            for(int e=1; e<adj[p].size(); e++){
                if(dsize[adj[p][0]] < dsize[adj[p][e]]) swap(adj[p][0], adj[p][e]);
            }
            FracX f;
            f.q1 = Fps(1).set(0,1).move();
            f.p1 = Fps(3).set(2,1).move();
            f.qx = Fps(1).set(0,-1).move();
            for(int e=1; e<adj[p].size(); e++){
                f = f + findFrac(findFrac, adj[p][e]);
            }
            buf.push_back(move(f));
            p = adj[p][0];
        }
        for(int d=1; d<(int)buf.size(); d*=2){
            for(int c=0; c+d<(int)buf.size(); c+=d*2){
                buf[c] = substitute(buf[c], buf[c+d]);
            }
        }
        return Frac{ buf[0].p1.move(), buf[0].q1.move() };
    };
    auto ansf = findFrac(findFrac, S);
    ansf.p = ansf.p.clip(2);
    int sz = max(ansf.p.size(), ansf.q.size());
    Modint ans = nachia::KthTermOfRationalGF(ansf.q.clip(0,sz).getVectorMoved(), ansf.p.clip(0,sz).getVectorMoved(), 2);
    cout << ans.val() << endl;
}

int main(){
    ios::sync_with_stdio(false); cin.tie(nullptr);
    #ifdef NACHIA
    int T; cin >> T; for(int t=0; t<T; T!=++t?(cout<<'\n'),0:0)
    #endif
    testcase();
    return 0;
}
0