結果

問題 No.2587 Random Walk on Tree
ユーザー maspymaspy
提出日時 2023-12-15 06:43:46
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 60,770 bytes
コンパイル時間 13,977 ms
コンパイル使用メモリ 395,924 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-27 13:02:57
合計ジャッジ時間 18,975 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
testcase_22 RE -
testcase_23 RE -
testcase_24 RE -
testcase_25 RE -
testcase_26 RE -
testcase_27 RE -
testcase_28 RE -
testcase_29 RE -
testcase_30 RE -
testcase_31 RE -
testcase_32 RE -
testcase_33 AC 2 ms
6,944 KB
testcase_34 RE -
testcase_35 RE -
testcase_36 RE -
testcase_37 RE -
testcase_38 RE -
testcase_39 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 3 "/home/maspy/compro/library/graph/shortest_path/bfs01.hpp"

template <typename T, typename GT>
pair<vc<T>, vc<int>> bfs01(GT& G, int v) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  deque<int> que;

  dist[v] = 0;
  que.push_front(v);
  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par};
}

// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  vc<int> root(N, -1);
  deque<int> que;

  for (auto&& v: vs) {
    dist[v] = 0;
    root[v] = v;
    que.push_front(v);
  }

  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        root[e.to] = root[e.frm];
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par, root};
}
#line 2 "/home/maspy/compro/library/poly/fps_div.hpp"

#line 2 "/home/maspy/compro/library/poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
  int t = 0;
  FOR(i, len(f)) if(f[i] != mint(0)) ++t;
  return t;
}
#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"

// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
  if (mod == 0) return 0;
  mod = abs(mod);
  val %= mod;
  if (val < 0) val += mod;
  ll a = val, b = mod, u = 1, v = 0, t;
  while (b > 0) {
    t = a / b;
    swap(a -= t * b, b), swap(u -= t * v, v);
  }
  if (u < 0) u += mod;
  return u;
}
#line 1 "/home/maspy/compro/library/mod/crt3.hpp"

constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
  a %= mod;
  u64 res = 1;
  FOR(32) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod, n /= 2;
  }
  return res;
}

template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
  static_assert(p0 < p1 && p1 < p2);
  static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x01_2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  u64 c = (a1 - a0 + p1) * x0_1 % p1;
  u64 a = a0 + c * p0;
  c = (a2 - a % p2 + p2) * x01_2 % p2;
  return T(a) + T(c) * T(p0) * T(p1);
}
#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"

template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vector<T> ans(n + m - 1);
  FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
  return ans;
}

template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vc<T> ans(n + m - 1);
  if (n <= 16 && (T::get_mod() < (1 << 30))) {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u64 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = sm;
    }
  } else {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u128 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = T::raw(sm % T::get_mod());
    }
  }
  return ans;
}
#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"

// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
  const int thresh = 30;
  if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
  int n = max(len(f), len(g));
  int m = ceil(n, 2);
  vc<T> f1, f2, g1, g2;
  if (len(f) < m) f1 = f;
  if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
  if (len(f) >= m) f2 = {f.begin() + m, f.end()};
  if (len(g) < m) g1 = g;
  if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
  if (len(g) >= m) g2 = {g.begin() + m, g.end()};
  vc<T> a = convolution_karatsuba(f1, g1);
  vc<T> b = convolution_karatsuba(f2, g2);
  FOR(i, len(f2)) f1[i] += f2[i];
  FOR(i, len(g2)) g1[i] += g2[i];
  vc<T> c = convolution_karatsuba(f1, g1);
  vc<T> F(len(f) + len(g) - 1);
  assert(2 * m + len(b) <= len(F));
  FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
  FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
  if (c.back() == T(0)) c.pop_back();
  FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
  return F;
}
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  assert(mint::can_ntt());
  const int rank2 = mint::ntt_info().fi;
  const int mod = mint::get_mod();
  static array<mint, 30> root, iroot;
  static array<mint, 30> rate2, irate2;
  static array<mint, 30> rate3, irate3;

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }
    mint prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }
    prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 3; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  if (!inverse) {
    int len = 0;
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            u64 mod2 = u64(mod) * mod;
            u64 a0 = a[i + offset].val;
            u64 a1 = u64(a[i + offset + p].val) * rot.val;
            u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
            u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
            u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            u64 na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            u64 l = a[i + offset].val;
            u64 r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            u64 a0 = a[i + offset + 0 * p].val;
            u64 a1 = a[i + offset + 1 * p].val;
            u64 a2 = a[i + offset + 2 * p].val;
            u64 a3 = a[i + offset + 3 * p].val;
            u64 x = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
            a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 1 "/home/maspy/compro/library/poly/fft.hpp"
namespace CFFT {
using real = double;

struct C {
  real x, y;

  C() : x(0), y(0) {}

  C(real x, real y) : x(x), y(y) {}
  inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
  inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
  inline C operator*(const C& c) const {
    return C(x * c.x - y * c.y, x * c.y + y * c.x);
  }

  inline C conj() const { return C(x, -y); }
};

const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};

void ensure_base(int nbase) {
  if (nbase <= base) return;
  rev.resize(1 << nbase);
  rts.resize(1 << nbase);
  for (int i = 0; i < (1 << nbase); i++) {
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
  }
  while (base < nbase) {
    real angle = PI * 2.0 / (1 << (base + 1));
    for (int i = 1 << (base - 1); i < (1 << base); i++) {
      rts[i << 1] = rts[i];
      real angle_i = angle * (2 * i + 1 - (1 << base));
      rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
    }
    ++base;
  }
}

void fft(vector<C>& a, int n) {
  assert((n & (n - 1)) == 0);
  int zeros = __builtin_ctz(n);
  ensure_base(zeros);
  int shift = base - zeros;
  for (int i = 0; i < n; i++) {
    if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
  }
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < n; i += 2 * k) {
      for (int j = 0; j < k; j++) {
        C z = a[i + j + k] * rts[j + k];
        a[i + j + k] = a[i + j] - z;
        a[i + j] = a[i + j] + z;
      }
    }
  }
}
} // namespace CFFT
#line 9 "/home/maspy/compro/library/poly/convolution.hpp"

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  if (a.empty() || b.empty()) return {};
  int n = int(a.size()), m = int(b.size());
  int sz = 1;
  while (sz < n + m - 1) sz *= 2;

  // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
  if ((n + m - 3) <= sz / 2) {
    auto a_last = a.back(), b_last = b.back();
    a.pop_back(), b.pop_back();
    auto c = convolution(a, b);
    c.resize(n + m - 1);
    c[n + m - 2] = a_last * b_last;
    FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
    FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
    return c;
  }

  a.resize(sz), b.resize(sz);
  bool same = a == b;
  ntt(a, 0);
  if (same) {
    b = a;
  } else {
    ntt(b, 0);
  }
  FOR(i, sz) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  static constexpr int p0 = 167772161;
  static constexpr int p1 = 469762049;
  static constexpr int p2 = 754974721;
  using mint0 = modint<p0>;
  using mint1 = modint<p1>;
  using mint2 = modint<p2>;
  vc<mint0> a0(n), b0(m);
  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
  FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
  auto c0 = convolution_ntt<mint0>(a0, b0);
  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  vc<mint> c(len(c0));
  FOR(i, n + m - 1) {
    c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
  }
  return c;
}

template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
  using C = CFFT::C;
  int need = (int)a.size() + (int)b.size() - 1;
  int nbase = 1;
  while ((1 << nbase) < need) nbase++;
  CFFT::ensure_base(nbase);
  int sz = 1 << nbase;
  vector<C> fa(sz);
  for (int i = 0; i < sz; i++) {
    int x = (i < (int)a.size() ? a[i] : 0);
    int y = (i < (int)b.size() ? b[i] : 0);
    fa[i] = C(x, y);
  }
  CFFT::fft(fa, sz);
  C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
  for (int i = 0; i <= (sz >> 1); i++) {
    int j = (sz - i) & (sz - 1);
    C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
    fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
    fa[i] = z;
  }
  for (int i = 0; i < (sz >> 1); i++) {
    C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
    C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
    fa[i] = A0 + A1 * s;
  }
  CFFT::fft(fa, sz >> 1);
  vector<double> ret(need);
  for (int i = 0; i < need; i++) {
    ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
  }
  return ret;
}

vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 2500) return convolution_naive(a, b);
  ll abs_sum_a = 0, abs_sum_b = 0;
  ll LIM = 1e15;
  FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
  FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
  if (i128(abs_sum_a) * abs_sum_b < 1e15) {
    vc<double> c = convolution_fft<ll>(a, b);
    vc<ll> res(len(c));
    FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
    return res;
  }

  static constexpr unsigned long long MOD1 = 754974721; // 2^24
  static constexpr unsigned long long MOD2 = 167772161; // 2^25
  static constexpr unsigned long long MOD3 = 469762049; // 2^26
  static constexpr unsigned long long M2M3 = MOD2 * MOD3;
  static constexpr unsigned long long M1M3 = MOD1 * MOD3;
  static constexpr unsigned long long M1M2 = MOD1 * MOD2;
  static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

  static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
  static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
  static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);

  using mint1 = modint<MOD1>;
  using mint2 = modint<MOD2>;
  using mint3 = modint<MOD3>;

  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  vc<mint3> a3(n), b3(m);
  FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
  FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];

  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  auto c3 = convolution_ntt<mint3>(a3, b3);

  vc<ll> c(n + m - 1);
  FOR(i, n + m - 1) {
    u64 x = 0;
    x += (c1[i].val * i1) % MOD1 * M2M3;
    x += (c2[i].val * i2) % MOD2 * M1M3;
    x += (c3[i].val * i3) % MOD3 * M1M2;
    ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
    if (diff < 0) diff += MOD1;
    static constexpr unsigned long long offset[5]
        = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
    x -= offset[diff % 5];
    c[i] = x;
  }
  return c;
}

template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (mint::can_ntt()) {
    if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
    return convolution_ntt(a, b);
  }
  if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
  return convolution_garner(a, b);
}
#line 4 "/home/maspy/compro/library/poly/fps_inv.hpp"

template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
  int N = len(f);
  vc<pair<int, mint>> dat;
  FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
  vc<mint> g(N);
  mint g0 = mint(1) / f[0];
  g[0] = g0;
  FOR(n, 1, N) {
    mint rhs = 0;
    for (auto&& [k, fk]: dat) {
      if (k > n) break;
      rhs -= fk * g[n - k];
    }
    g[n] = rhs * g0;
  }
  return g;
}

template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {
  vc<mint> G = {mint(1) / F[0]};
  ll N = len(F), n = 1;
  G.reserve(N);
  while (n < N) {
    vc<mint> f(2 * n), g(2 * n);
    FOR(i, min(N, 2 * n)) f[i] = F[i];
    FOR(i, n) g[i] = G[i];
    ntt(f, false), ntt(g, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR(i, n) f[i] = 0;
    ntt(f, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);
    n *= 2;
  }
  return G;
}

template <typename mint>
vc<mint> fps_inv_dense(const vc<mint>& F) {
  if (mint::can_ntt()) return fps_inv_dense_ntt(F);
  const int N = len(F);
  vc<mint> R = {mint(1) / F[0]};
  vc<mint> p;
  int m = 1;
  while (m < N) {
    p = convolution(R, R);
    p.resize(m + m);
    vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
    p = convolution(p, f);
    R.resize(m + m);
    FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
    m += m;
  }
  R.resize(N);
  return R;
}

template <typename mint>
vc<mint> fps_inv(const vc<mint>& f) {
  assert(f[0] != mint(0));
  int n = count_terms(f);
  int t = (mint::can_ntt() ? 160 : 820);
  return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));
}
#line 5 "/home/maspy/compro/library/poly/fps_div.hpp"

// f/g. f の長さで出力される.
template <typename mint, bool SPARSE = false>
vc<mint> fps_div(vc<mint> f, vc<mint> g) {
  if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g);
  int n = len(f);
  g.resize(n);
  g = fps_inv<mint>(g);
  f = convolution(f, g);
  f.resize(n);
  return f;
}

// f/g ただし g は sparse
template <typename mint>
vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) {
  if (g[0] != mint(1)) {
    mint cf = g[0].inverse();
    for (auto&& x: f) x *= cf;
    for (auto&& x: g) x *= cf;
  }

  vc<pair<int, mint>> dat;
  FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]);
  FOR(i, len(f)) {
    for (auto&& [j, x]: dat) {
      if (i >= j) f[i] += x * f[i - j];
    }
  }
  return f;
}
#line 2 "/home/maspy/compro/library/poly/ntt_doubling.hpp"

template <typename mint>
void ntt_doubling(vector<mint>& a) {
  const int rank2 = mint::ntt_info().fi;
  static array<mint, 30> root;
  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; }
  }

  const int M = (int)a.size();
  auto b = a;
  ntt(b, 1);
  mint r = 1, zeta = root[topbit(2 * M)];
  FOR(i, M) b[i] *= r, r *= zeta;
  ntt(b, 0);
  copy(begin(b), end(b), back_inserter(a));
}
#line 3 "/home/maspy/compro/library/poly/coef_of_rational_fps.hpp"

template <typename mint>
mint coef_of_rational_fps_small(vector<mint> P, vector<mint> Q, ll N) {
  assert(len(Q) <= 16);
  int m = len(Q) - 1;
  assert(len(P) == m);
  if (m == 0) return mint(0);
  vc<u32> Q32(m + 1);
  FOR(i, m + 1) Q32[i] = (-Q[i]).val;

  using poly = vc<u64>;
  auto dfs = [&](auto& dfs, const ll N) -> poly {
    // x^N mod G
    if (N == 0) return {1};
    poly f = dfs(dfs, N / 2);
    poly g(len(f) * 2 - 1 + (N & 1));
    FOR(i, len(f)) FOR(j, len(f)) { g[i + j + (N & 1)] += f[i] * f[j]; }
    FOR(i, len(g)) g[i] = mint(g[i]).val;
    FOR_R(i, len(g)) {
      g[i] = mint(g[i]).val;
      if (i >= m) FOR(j, 1, len(Q)) g[i - j] += Q32[j] * g[i];
    }
    g.resize(m);
    return g;
  };
  poly f = dfs(dfs, N);
  FOR(i, m) { FOR(j, 1, i + 1) P[i] -= Q[j] * P[i - j]; }
  u64 res = 0;
  FOR(i, m) res += f[i] * P[i].val;
  return res;
}

template <typename mint>
mint coef_of_rational_fps_ntt(vector<mint> P, vector<mint> Q, ll N) {
  int log = 0;
  while ((1 << log) < len(Q)) ++log;
  int n = 1 << log;
  P.resize(2 * n), Q.resize(2 * n);
  ntt(P, 0), ntt(Q, 0);
  vc<int> btr(n);
  FOR(i, n) { btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (log - 1)); }

  int t = mint::ntt_info().fi;
  mint r = mint::ntt_info().se;
  mint dw = r.inverse().pow((1 << t) / (2 * n));

  vc<mint> S, T;
  while (N >= n) {
    mint w = inv<mint>(2);
    T.resize(n);
    FOR(i, n) T[i] = Q[2 * i + 0] * Q[2 * i + 1];
    S.resize(n);
    if (N & 1) {
      for (auto& i: btr) {
        S[i] = (P[2 * i] * Q[2 * i + 1] - P[2 * i + 1] * Q[2 * i]) * w;
        w *= dw;
      }
    } else {
      FOR(i, n) {
        S[i] = (P[2 * i] * Q[2 * i + 1] + P[2 * i + 1] * Q[2 * i]) * w;
      }
    }
    swap(P, S), swap(Q, T);
    N >>= 1;
    if (N < n) break;
    ntt_doubling(P);
    ntt_doubling(Q);
  }
  ntt(P, 1), ntt(Q, 1);
  return fps_div(P, Q)[N];
}

template <typename mint>
mint coef_of_rational_fps_convolution(vector<mint> P, vector<mint> Q, ll N) {
  P.resize(len(Q) - 1);
  if (len(P) == 0) return 0;
  while (N >= len(P)) {
    vc<mint> Q1 = Q;
    FOR(i, len(Q1)) if (i & 1) Q1[i] = -Q1[i];
    P = convolution(P, Q1);
    Q = convolution(Q, Q1);
    FOR(i, len(Q1)) Q[i] = Q[2 * i];
    FOR(i, len(Q1) - 1) P[i] = P[2 * i | (N & 1)];
    P.resize(len(Q1) - 1);
    Q.resize(len(Q1));
    N /= 2;
  }
  return fps_div(P, Q)[N];
}

template <typename mint>
mint coef_of_rational_fps(vector<mint> P, vector<mint> Q, ll N) {
  assert(len(P) < len(Q) && Q[0] == mint(1));
  if (N == 0) return (P.empty() ? mint(0) : P[0]);
  int n = len(Q);
  if (mint::ntt_info().fi != -1) {
    if (n <= 10) {
      return coef_of_rational_fps_small(P, Q, N);
    } else {
      return coef_of_rational_fps_ntt(P, Q, N);
    }
  }
  return (n <= 16 ? coef_of_rational_fps_small(P, Q, N)
                  : coef_of_rational_fps_convolution(P, Q, N));
}
#line 2 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp"

#line 2 "/home/maspy/compro/library/nt/primetable.hpp"

template <typename T = int>
vc<T> primetable(int LIM) {
  ++LIM;
  const int S = 32768;
  static int done = 2;
  static vc<T> primes = {2}, sieve(S + 1);

  if (done < LIM) {
    done = LIM;

    primes = {2}, sieve.assign(S + 1, 0);
    const int R = LIM / 2;
    primes.reserve(int(LIM / log(LIM) * 1.1));
    vc<pair<int, int>> cp;
    for (int i = 3; i <= S; i += 2) {
      if (!sieve[i]) {
        cp.eb(i, i * i / 2);
        for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
      }
    }
    for (int L = 1; L <= R; L += S) {
      array<bool, S> block{};
      for (auto& [p, idx]: cp)
        for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
      FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
    }
  }
  int k = LB(primes, LIM + 1);
  return {primes.begin(), primes.begin() + k};
}
#line 3 "/home/maspy/compro/library/mod/powertable.hpp"

// a^0, ..., a^N
template <typename mint>
vc<mint> powertable_1(mint a, ll N) {
  // table of a^i
  vc<mint> f(N + 1, 1);
  FOR(i, N) f[i + 1] = a * f[i];
  return f;
}

// 0^e, ..., N^e
template <typename mint>
vc<mint> powertable_2(ll e, ll N) {
  auto primes = primetable(N);
  vc<mint> f(N + 1, 1);
  f[0] = mint(0).pow(e);
  for (auto&& p: primes) {
    if (p > N) break;
    mint xp = mint(p).pow(e);
    ll pp = p;
    while (pp <= N) {
      ll i = pp;
      while (i <= N) {
        f[i] *= xp;
        i += pp;
      }
      pp *= p;
    }
  }
  return f;
}
#line 5 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp"

// f(x) -> f(x+c)
template <typename mint>
vc<mint> poly_taylor_shift(vc<mint> f, mint c) {
  ll N = len(f);
  FOR(i, N) f[i] *= fact<mint>(i);
  auto b = powertable_1<mint>(c, N);
  FOR(i, N) b[i] *= fact_inv<mint>(i);
  reverse(all(f));
  f = convolution(f, b);
  f.resize(N);
  reverse(all(f));
  FOR(i, N) f[i] *= fact_inv<mint>(i);
  return f;
}
#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"

struct UnionFind {
  int n, n_comp;
  vc<int> dat; // par or (-size)
  UnionFind(int n = 0) { build(n); }

  void build(int m) {
    n = m, n_comp = m;
    dat.assign(n, -1);
  }

  void reset() { build(n); }

  int operator[](int x) {
    while (dat[x] >= 0) {
      int pp = dat[dat[x]];
      if (pp < 0) { return dat[x]; }
      x = dat[x] = pp;
    }
    return x;
  }

  ll size(int x) {
    x = (*this)[x];
    return -dat[x];
  }

  bool merge(int x, int y) {
    x = (*this)[x], y = (*this)[y];
    if (x == y) return false;
    if (-dat[x] < -dat[y]) swap(x, y);
    dat[x] += dat[y], dat[y] = x, n_comp--;
    return true;
  }
};
#line 2 "/home/maspy/compro/library/poly/convolution_all.hpp"

#line 4 "/home/maspy/compro/library/poly/convolution_all.hpp"

template <typename T>
vc<T> convolution_all(vc<vc<T>>& polys) {
  if (len(polys) == 0) return {T(1)};
  while (1) {
    int n = len(polys);
    if (n == 1) break;
    int m = ceil(n, 2);
    FOR(i, m) {
      if (2 * i + 1 == n) {
        polys[i] = polys[2 * i];
      } else {
        polys[i] = convolution(polys[2 * i], polys[2 * i + 1]);
      }
    }
    polys.resize(m);
  }
  return polys[0];
}
#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }
  // root を根とした場合の lca
  int LCA_root(int u, int v, int root) {
    return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);
  }
  int lca(int u, int v) { return LCA(u, v); }
  int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};
#line 2 "/home/maspy/compro/library/graph/ds/static_toptree.hpp"

/*
tute さんの実装 https://yukicoder.me/submissions/838092 を参考にしている.
いわゆる toptree (辺からはじめてマージ過程を木にする)とは少し異なるはず.
木を「heavy path 上の辺で分割」「根を virtual にする」
「light edges の分割」「light edge を消す」で頂点に分割していく.
逆にたどれば,1 頂点からはじめて木全体を作る高さ O(logN) の木になる.
高さについて:https://www.mathenachia.blog/mergetech-and-logn/
・lch == rch == -1:頂点
・rch == -1:
  ・heavy なら light の集約に頂点を付加したもの
  ・light なら 根付き木に light edge を付加したもの
・子が 2 つ
  ・heavy なら heavy path を辺で結合したもの
  ・light なら light edge たちのマージ
*/
template <typename TREE>
struct Static_TopTree {
  TREE &tree;

  vc<int> par, lch, rch, A, B;
  vc<bool> heavy;

  Static_TopTree(TREE &tree) : tree(tree) {
    int root = tree.V[0];
    build(root);
    // relabel
    int n = len(par);
    reverse(all(par)), reverse(all(lch)), reverse(all(rch)), reverse(all(A)),
        reverse(all(B)), reverse(all(heavy));
    for (auto &x: par) x = (x == -1 ? -1 : n - 1 - x);
    for (auto &x: lch) x = (x == -1 ? -1 : n - 1 - x);
    for (auto &x: rch) x = (x == -1 ? -1 : n - 1 - x);
  }

  // 木全体での集約値を得る
  // from_vertex(v)
  // add_vertex(x, v)
  // add_edge(x, u, v)  : u が親
  // merge_light(x, y)
  // merge_heavy(x, y, a, b, c, d)  : [a,b] + [c,d] = [a,d]
  template <typename Data, typename F1, typename F2, typename F3, typename F4,
            typename F5>
  Data tree_dp(F1 from_vertex, F2 add_vertex, F3 add_edge, F4 merge_light,
               F5 merge_heavy) {
    auto dfs = [&](auto &dfs, int k) -> Data {
      if (lch[k] == -1 && rch[k] == -1) { return from_vertex(A[k]); }
      if (rch[k] == -1) {
        Data x = dfs(dfs, lch[k]);
        if (heavy[k]) {
          return add_vertex(x, A[k]);
        } else {
          return add_edge(x, A[k], B[lch[k]]);
        }
      }
      Data x = dfs(dfs, lch[k]);
      Data y = dfs(dfs, rch[k]);
      if (heavy[k]) {
        return merge_heavy(x, y, A[lch[k]], B[lch[k]], A[rch[k]], B[rch[k]]);
      }
      return merge_light(x, y);
    };
    return dfs(dfs, 0);
  }

private:
  int add_node(int l, int r, int a, int b, bool h) {
    int ret = len(par);
    par.eb(-1), lch.eb(l), rch.eb(r), A.eb(a), B.eb(b), heavy.eb(h);
    if (l != -1) par[l] = ret;
    if (r != -1) par[r] = ret;
    return ret;
  }

  int build(int v) {
    // v は heavy path の根なので v を根とする部分木に対応するノードを作る
    assert(tree.head[v] == v);
    auto path = tree.heavy_path_at(v);
    reverse(all(path));

    auto dfs = [&](auto &dfs, int l, int r) -> int {
      // path[l:r)
      if (l + 1 < r) {
        int m = (l + r) / 2;
        int x = dfs(dfs, l, m);
        int y = dfs(dfs, m, r);
        return add_node(x, y, path[l], path[r - 1], true);
      }
      assert(r == l + 1);
      int me = path[l];
      // sz, idx
      pqg<pair<int, int>> que;
      for (auto &to: tree.collect_light(me)) {
        int x = build(to);
        int y = add_node(x, -1, me, me, false);
        que.emplace(tree.subtree_size(to), y);
      }
      if (que.empty()) { return add_node(-1, -1, me, me, true); }
      while (len(que) >= 2) {
        auto [s1, x] = POP(que);
        auto [s2, y] = POP(que);
        int z = add_node(x, y, me, me, false);
        que.emplace(s1 + s2, z);
      }
      auto [s, x] = POP(que);
      return add_node(x, -1, me, me, true);
    };
    return dfs(dfs, 0, len(path));
  }
};
#line 12 "main.cpp"

using mint = modint998;
using poly = vc<mint>;

/*
とりあえず stay しないとして解くことを考える

A を隣接行列とすると, walk の母関数は
分子:det(I-xA) の cofactor
分母:det(I-xA)

分母について
対角以外をマッチングでとるしかないのでマッチングの数え上げでできる
1-a1x^2+a2x^4-...

分子について
(v,u) パスとマッチングに分解する.
uv パスの頂点数を m として、uv パスを使わないマッチングの数え上げをする
x^m(1-a_1x^2+a_2x^4-...)
*/

poly count_matching(Graph<int, 0> G) {
  Tree<decltype(G)> tree(G);
  Static_TopTree<decltype(tree)> STT(tree);

  using Data = array<array<poly, 2>, 2>;
  auto from_vertex = [&](int v) -> Data {
    Data X;
    X[0][0] = poly{mint(1)};
    X[0][1] = poly{mint(0)};
    X[1][0] = poly{mint(0)};
    X[1][1] = poly{mint(0)};
    return X;
  };
  auto add_vertex = [&](Data X, int v) -> Data { return X; };
  auto add_edge = [&](Data X, int u, int v) -> Data {
    int n = len(X[0][0]);
    poly F0(n), F1(n);
    FOR(i, n) F0[i] = X[0][0][i] + X[1][0][i];
    FOR(i, n) F1[i] = X[0][1][i] + X[1][1][i];
    Data Y;
    Y[0][0].resize(n + 1);
    Y[1][1].resize(n + 1);
    // 辺を使わない
    FOR(i, n) Y[0][0][i] += F0[i] + F1[i];
    // 辺を使う
    FOR(i, n) Y[1][1][1 + i] += F0[i];
    return Y;
  };
  auto merge_light = [&](Data X, Data Y) -> Data {
    poly X0 = X[0][0], X1 = X[1][1];
    poly Y0 = Y[0][0], Y1 = Y[1][1];
    poly A = convolution(X0, Y0);
    poly B = convolution(X0, Y1);
    poly C = convolution(X1, Y0);
    int n = len(A);
    X[0][0].resize(n);
    X[1][1].resize(n);
    FOR(i, n) X[0][0][i] = A[i], X[1][1][i] = B[i] + C[i];
    return X;
  };
  auto merge_heavy
      = [&](Data X, Data Y, int va, int vb, int vc, int vd) -> Data {
    int n1 = len(X[0][0]) - 1, n2 = len(Y[0][0]) - 1;
    Data Z;
    // FOR(i, 2) FOR(j, 2) print("X", X[i][j]);
    // FOR(i, 2) FOR(j, 2) print("Y", Y[i][j]);
    FOR(i, 2) FOR(j, 2) Z[i][j].resize(n1 + n2 + 2);

    FOR(a, 2) FOR(b, 2) FOR(c, 2) FOR(d, 2) {
      poly f = convolution(X[a][b], Y[c][d]);
      // 辺を使わない
      FOR(i, len(f)) Z[a][d][i] += f[i];
      // 辺を使う
      if (b == 0 && c == 0) {
        int x = (va != vb ? a : 1);
        int y = (vc != vd ? d : 1);
        FOR(i, len(f)) Z[x][y][1 + i] += f[i];
      }
    }
    return Z;
  };

  Data X = STT.tree_dp<Data>(from_vertex, add_vertex, add_edge, merge_light,
                             merge_heavy);
  int n = len(X[0][0]);
  vc<mint> ANS(n);
  FOR(a, 2) FOR(b, 2) { FOR(i, len(X[a][b])) ANS[i] += X[a][b][i]; }
  // G.debug();
  // print(ANS);
  return ANS;
}

void solve() {
  LL(N, M, S, T);
  assert(N < 20);
  --S, --T;
  Graph<int, 0> G(N);
  G.read_tree();

  vc<int> on_path(N);
  {
    auto [dist, par] = bfs01<int>(G, S);
    on_path[T] = 1;
    while (T != S) {
      T = par[T];
      on_path[T] = 1;
    }
  }

  auto A = count_matching(G);
  vvc<mint> polys;
  UnionFind uf(N);
  for (auto& e: G.edges) {
    if (on_path[e.frm] || on_path[e.to]) continue;
    uf.merge(e.frm, e.to);
  }
  vvc<int> comp(N);
  FOR(v, N) comp[uf[v]].eb(v);
  FOR(r, N) {
    if (on_path[r]) continue;
    if (uf[r] != r) continue;
    vc<int> V = comp[r];
    if (len(V) == 1) continue;
    Graph<int, 0> H = G.rearrange(V);
    poly f = count_matching(H);
    polys.eb(f);
  }
  poly B = convolution_all<mint>(polys);
  // print("A", A);
  // print("B", B);
  // ここから先はとりあえず正しい計算量になっているはず
  poly f(N + 1), g(N + 1);
  FOR(i, len(A)) {
    if (A[i] != mint(0)) f[2 * i] += (i % 2 == 0 ? A[i] : -A[i]);
  }
  int d = SUM<int>(on_path) - 1;
  FOR(i, len(B)) {
    if (B[i] != mint(0)) g[d + 2 * i] += (i % 2 == 0 ? B[i] : -B[i]);
  }

  // W(x) = g(x)/f(x)
  // ANS = sum_m binom(M,m)[x^m]W(x)
  // EGF(W) = sum_m W_m 1/m! x^m
  // [x^M]e^x EGF(W)
  // 根が全部 -1 される
  // ANS も C-rec で、f(x-1)

  vc<mint> W = fps_div(g, f);
  FOR(m, N + 1) W[m] *= fact_inv<mint>(m);
  vc<mint> tmp(N + 1);
  FOR(m, N + 1) tmp[m] = fact_inv<mint>(m);
  vc<mint> F = convolution(W, tmp);
  F.resize(N + 1);
  FOR(i, N + 1) F[i] *= fact<mint>(i);
  reverse(all(f));
  f = poly_taylor_shift<mint>(f, -1);
  reverse(all(f));
  g = convolution<mint>(F, f);
  g.resize(N);
  mint ANS = coef_of_rational_fps<mint>(g, f, M);
  print(ANS);
}

signed main() {
  int T = 1;
  // INT(T);
  FOR(T) solve();
  return 0;
}
0