結果

問題 No.2587 Random Walk on Tree
ユーザー maspymaspy
提出日時 2023-12-15 17:55:05
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,249 ms / 10,000 ms
コード長 63,617 bytes
コンパイル時間 12,027 ms
コンパイル使用メモリ 391,312 KB
実行使用メモリ 35,608 KB
最終ジャッジ日時 2024-09-27 13:14:14
合計ジャッジ時間 62,521 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 3 ms
6,940 KB
testcase_05 AC 4 ms
6,944 KB
testcase_06 AC 3 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 3 ms
6,944 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 3 ms
6,940 KB
testcase_11 AC 6 ms
6,940 KB
testcase_12 AC 24 ms
6,940 KB
testcase_13 AC 36 ms
6,944 KB
testcase_14 AC 10 ms
6,940 KB
testcase_15 AC 2,163 ms
21,088 KB
testcase_16 AC 1,244 ms
15,820 KB
testcase_17 AC 1,384 ms
19,296 KB
testcase_18 AC 191 ms
6,940 KB
testcase_19 AC 2,344 ms
29,508 KB
testcase_20 AC 2,037 ms
21,212 KB
testcase_21 AC 2,524 ms
25,084 KB
testcase_22 AC 2,228 ms
35,608 KB
testcase_23 AC 2,065 ms
33,104 KB
testcase_24 AC 2,250 ms
22,092 KB
testcase_25 AC 724 ms
23,780 KB
testcase_26 AC 3,065 ms
32,416 KB
testcase_27 AC 2,443 ms
25,100 KB
testcase_28 AC 2,807 ms
23,476 KB
testcase_29 AC 2,846 ms
23,956 KB
testcase_30 AC 2,308 ms
22,936 KB
testcase_31 AC 2,324 ms
23,308 KB
testcase_32 AC 3,249 ms
31,828 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 1,423 ms
27,132 KB
testcase_35 AC 1,234 ms
27,432 KB
testcase_36 AC 1,352 ms
28,696 KB
testcase_37 AC 1,216 ms
28,828 KB
testcase_38 AC 2,667 ms
32,132 KB
testcase_39 AC 2,768 ms
32,092 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/2587"
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 4 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1045430273) return {20, 363};
    if (mod == 1051721729) return {20, 330};
    if (mod == 1053818881) return {20, 2789};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed)
        csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    if (len(used_e) != M) used_e.assign(M, 0);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 7 "main.cpp"

#line 2 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp"

#line 2 "/home/maspy/compro/library/nt/primetable.hpp"

template <typename T = int>
vc<T> primetable(int LIM) {
  ++LIM;
  const int S = 32768;
  static int done = 2;
  static vc<T> primes = {2}, sieve(S + 1);

  if (done < LIM) {
    done = LIM;

    primes = {2}, sieve.assign(S + 1, 0);
    const int R = LIM / 2;
    primes.reserve(int(LIM / log(LIM) * 1.1));
    vc<pair<int, int>> cp;
    for (int i = 3; i <= S; i += 2) {
      if (!sieve[i]) {
        cp.eb(i, i * i / 2);
        for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;
      }
    }
    for (int L = 1; L <= R; L += S) {
      array<bool, S> block{};
      for (auto& [p, idx]: cp)
        for (int i = idx; i < S + L; idx = (i += p)) block[i - L] = 1;
      FOR(i, min(S, R - L)) if (!block[i]) primes.eb((L + i) * 2 + 1);
    }
  }
  int k = LB(primes, LIM + 1);
  return {primes.begin(), primes.begin() + k};
}
#line 3 "/home/maspy/compro/library/mod/powertable.hpp"

// a^0, ..., a^N
template <typename mint>
vc<mint> powertable_1(mint a, ll N) {
  // table of a^i
  vc<mint> f(N + 1, 1);
  FOR(i, N) f[i + 1] = a * f[i];
  return f;
}

// 0^e, ..., N^e
template <typename mint>
vc<mint> powertable_2(ll e, ll N) {
  auto primes = primetable(N);
  vc<mint> f(N + 1, 1);
  f[0] = mint(0).pow(e);
  for (auto&& p: primes) {
    if (p > N) break;
    mint xp = mint(p).pow(e);
    ll pp = p;
    while (pp <= N) {
      ll i = pp;
      while (i <= N) {
        f[i] *= xp;
        i += pp;
      }
      pp *= p;
    }
  }
  return f;
}
#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"

// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
  if (mod == 0) return 0;
  mod = abs(mod);
  val %= mod;
  if (val < 0) val += mod;
  ll a = val, b = mod, u = 1, v = 0, t;
  while (b > 0) {
    t = a / b;
    swap(a -= t * b, b), swap(u -= t * v, v);
  }
  if (u < 0) u += mod;
  return u;
}
#line 1 "/home/maspy/compro/library/mod/crt3.hpp"

constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
  a %= mod;
  u64 res = 1;
  FOR(32) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod, n /= 2;
  }
  return res;
}

template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
  static_assert(p0 < p1 && p1 < p2);
  static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x01_2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  u64 c = (a1 - a0 + p1) * x0_1 % p1;
  u64 a = a0 + c * p0;
  c = (a2 - a % p2 + p2) * x01_2 % p2;
  return T(a) + T(c) * T(p0) * T(p1);
}
#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"

template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vector<T> ans(n + m - 1);
  FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
  return ans;
}

template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vc<T> ans(n + m - 1);
  if (n <= 16 && (T::get_mod() < (1 << 30))) {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u64 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = sm;
    }
  } else {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u128 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = T::raw(sm % T::get_mod());
    }
  }
  return ans;
}
#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"

// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
  const int thresh = 30;
  if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
  int n = max(len(f), len(g));
  int m = ceil(n, 2);
  vc<T> f1, f2, g1, g2;
  if (len(f) < m) f1 = f;
  if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
  if (len(f) >= m) f2 = {f.begin() + m, f.end()};
  if (len(g) < m) g1 = g;
  if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
  if (len(g) >= m) g2 = {g.begin() + m, g.end()};
  vc<T> a = convolution_karatsuba(f1, g1);
  vc<T> b = convolution_karatsuba(f2, g2);
  FOR(i, len(f2)) f1[i] += f2[i];
  FOR(i, len(g2)) g1[i] += g2[i];
  vc<T> c = convolution_karatsuba(f1, g1);
  vc<T> F(len(f) + len(g) - 1);
  assert(2 * m + len(b) <= len(F));
  FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
  FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
  if (c.back() == T(0)) c.pop_back();
  FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
  return F;
}
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  assert(mint::can_ntt());
  const int rank2 = mint::ntt_info().fi;
  const int mod = mint::get_mod();
  static array<mint, 30> root, iroot;
  static array<mint, 30> rate2, irate2;
  static array<mint, 30> rate3, irate3;

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }
    mint prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }
    prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 3; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  if (!inverse) {
    int len = 0;
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            u64 mod2 = u64(mod) * mod;
            u64 a0 = a[i + offset].val;
            u64 a1 = u64(a[i + offset + p].val) * rot.val;
            u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
            u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
            u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            u64 na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            u64 l = a[i + offset].val;
            u64 r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            u64 a0 = a[i + offset + 0 * p].val;
            u64 a1 = a[i + offset + 1 * p].val;
            u64 a2 = a[i + offset + 2 * p].val;
            u64 a3 = a[i + offset + 3 * p].val;
            u64 x = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
            a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 1 "/home/maspy/compro/library/poly/fft.hpp"
namespace CFFT {
using real = double;

struct C {
  real x, y;

  C() : x(0), y(0) {}

  C(real x, real y) : x(x), y(y) {}
  inline C operator+(const C& c) const { return C(x + c.x, y + c.y); }
  inline C operator-(const C& c) const { return C(x - c.x, y - c.y); }
  inline C operator*(const C& c) const {
    return C(x * c.x - y * c.y, x * c.y + y * c.x);
  }

  inline C conj() const { return C(x, -y); }
};

const real PI = acosl(-1);
int base = 1;
vector<C> rts = {{0, 0}, {1, 0}};
vector<int> rev = {0, 1};

void ensure_base(int nbase) {
  if (nbase <= base) return;
  rev.resize(1 << nbase);
  rts.resize(1 << nbase);
  for (int i = 0; i < (1 << nbase); i++) {
    rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
  }
  while (base < nbase) {
    real angle = PI * 2.0 / (1 << (base + 1));
    for (int i = 1 << (base - 1); i < (1 << base); i++) {
      rts[i << 1] = rts[i];
      real angle_i = angle * (2 * i + 1 - (1 << base));
      rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
    }
    ++base;
  }
}

void fft(vector<C>& a, int n) {
  assert((n & (n - 1)) == 0);
  int zeros = __builtin_ctz(n);
  ensure_base(zeros);
  int shift = base - zeros;
  for (int i = 0; i < n; i++) {
    if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); }
  }
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < n; i += 2 * k) {
      for (int j = 0; j < k; j++) {
        C z = a[i + j + k] * rts[j + k];
        a[i + j + k] = a[i + j] - z;
        a[i + j] = a[i + j] + z;
      }
    }
  }
}
} // namespace CFFT
#line 9 "/home/maspy/compro/library/poly/convolution.hpp"

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  if (a.empty() || b.empty()) return {};
  int n = int(a.size()), m = int(b.size());
  int sz = 1;
  while (sz < n + m - 1) sz *= 2;

  // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
  if ((n + m - 3) <= sz / 2) {
    auto a_last = a.back(), b_last = b.back();
    a.pop_back(), b.pop_back();
    auto c = convolution(a, b);
    c.resize(n + m - 1);
    c[n + m - 2] = a_last * b_last;
    FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
    FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
    return c;
  }

  a.resize(sz), b.resize(sz);
  bool same = a == b;
  ntt(a, 0);
  if (same) {
    b = a;
  } else {
    ntt(b, 0);
  }
  FOR(i, sz) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  static constexpr int p0 = 167772161;
  static constexpr int p1 = 469762049;
  static constexpr int p2 = 754974721;
  using mint0 = modint<p0>;
  using mint1 = modint<p1>;
  using mint2 = modint<p2>;
  vc<mint0> a0(n), b0(m);
  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
  FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
  auto c0 = convolution_ntt<mint0>(a0, b0);
  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  vc<mint> c(len(c0));
  FOR(i, n + m - 1) {
    c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val);
  }
  return c;
}

template <typename R>
vc<double> convolution_fft(const vc<R>& a, const vc<R>& b) {
  using C = CFFT::C;
  int need = (int)a.size() + (int)b.size() - 1;
  int nbase = 1;
  while ((1 << nbase) < need) nbase++;
  CFFT::ensure_base(nbase);
  int sz = 1 << nbase;
  vector<C> fa(sz);
  for (int i = 0; i < sz; i++) {
    int x = (i < (int)a.size() ? a[i] : 0);
    int y = (i < (int)b.size() ? b[i] : 0);
    fa[i] = C(x, y);
  }
  CFFT::fft(fa, sz);
  C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
  for (int i = 0; i <= (sz >> 1); i++) {
    int j = (sz - i) & (sz - 1);
    C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
    fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
    fa[i] = z;
  }
  for (int i = 0; i < (sz >> 1); i++) {
    C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
    C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * CFFT::rts[(sz >> 1) + i];
    fa[i] = A0 + A1 * s;
  }
  CFFT::fft(fa, sz >> 1);
  vector<double> ret(need);
  for (int i = 0; i < need; i++) {
    ret[i] = (i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
  }
  return ret;
}

vector<ll> convolution(const vector<ll>& a, const vector<ll>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 2500) return convolution_naive(a, b);
  ll abs_sum_a = 0, abs_sum_b = 0;
  ll LIM = 1e15;
  FOR(i, n) abs_sum_a = min(LIM, abs_sum_a + abs(a[i]));
  FOR(i, m) abs_sum_b = min(LIM, abs_sum_b + abs(b[i]));
  if (i128(abs_sum_a) * abs_sum_b < 1e15) {
    vc<double> c = convolution_fft<ll>(a, b);
    vc<ll> res(len(c));
    FOR(i, len(c)) res[i] = ll(floor(c[i] + .5));
    return res;
  }

  static constexpr unsigned long long MOD1 = 754974721; // 2^24
  static constexpr unsigned long long MOD2 = 167772161; // 2^25
  static constexpr unsigned long long MOD3 = 469762049; // 2^26
  static constexpr unsigned long long M2M3 = MOD2 * MOD3;
  static constexpr unsigned long long M1M3 = MOD1 * MOD3;
  static constexpr unsigned long long M1M2 = MOD1 * MOD2;
  static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

  static const unsigned long long i1 = mod_inv(MOD2 * MOD3, MOD1);
  static const unsigned long long i2 = mod_inv(MOD1 * MOD3, MOD2);
  static const unsigned long long i3 = mod_inv(MOD1 * MOD2, MOD3);

  using mint1 = modint<MOD1>;
  using mint2 = modint<MOD2>;
  using mint3 = modint<MOD3>;

  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  vc<mint3> a3(n), b3(m);
  FOR(i, n) a1[i] = a[i], a2[i] = a[i], a3[i] = a[i];
  FOR(i, m) b1[i] = b[i], b2[i] = b[i], b3[i] = b[i];

  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  auto c3 = convolution_ntt<mint3>(a3, b3);

  vc<ll> c(n + m - 1);
  FOR(i, n + m - 1) {
    u64 x = 0;
    x += (c1[i].val * i1) % MOD1 * M2M3;
    x += (c2[i].val * i2) % MOD2 * M1M3;
    x += (c3[i].val * i3) % MOD3 * M1M2;
    ll diff = c1[i].val - ((long long)(x) % (long long)(MOD1));
    if (diff < 0) diff += MOD1;
    static constexpr unsigned long long offset[5]
        = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
    x -= offset[diff % 5];
    c[i] = x;
  }
  return c;
}

template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (mint::can_ntt()) {
    if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
    return convolution_ntt(a, b);
  }
  if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
  return convolution_garner(a, b);
}
#line 5 "/home/maspy/compro/library/poly/poly_taylor_shift.hpp"

// f(x) -> f(x+c)
template <typename mint>
vc<mint> poly_taylor_shift(vc<mint> f, mint c) {
  ll N = len(f);
  FOR(i, N) f[i] *= fact<mint>(i);
  auto b = powertable_1<mint>(c, N);
  FOR(i, N) b[i] *= fact_inv<mint>(i);
  reverse(all(f));
  f = convolution(f, b);
  f.resize(N);
  reverse(all(f));
  FOR(i, N) f[i] *= fact_inv<mint>(i);
  return f;
}
#line 2 "/home/maspy/compro/library/poly/fps_div.hpp"

#line 2 "/home/maspy/compro/library/poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
  int t = 0;
  FOR(i, len(f)) if(f[i] != mint(0)) ++t;
  return t;
}
#line 4 "/home/maspy/compro/library/poly/fps_inv.hpp"

template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
  int N = len(f);
  vc<pair<int, mint>> dat;
  FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
  vc<mint> g(N);
  mint g0 = mint(1) / f[0];
  g[0] = g0;
  FOR(n, 1, N) {
    mint rhs = 0;
    for (auto&& [k, fk]: dat) {
      if (k > n) break;
      rhs -= fk * g[n - k];
    }
    g[n] = rhs * g0;
  }
  return g;
}

template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {
  vc<mint> G = {mint(1) / F[0]};
  ll N = len(F), n = 1;
  G.reserve(N);
  while (n < N) {
    vc<mint> f(2 * n), g(2 * n);
    FOR(i, min(N, 2 * n)) f[i] = F[i];
    FOR(i, n) g[i] = G[i];
    ntt(f, false), ntt(g, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR(i, n) f[i] = 0;
    ntt(f, false);
    FOR(i, 2 * n) f[i] *= g[i];
    ntt(f, true);
    FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);
    n *= 2;
  }
  return G;
}

template <typename mint>
vc<mint> fps_inv_dense(const vc<mint>& F) {
  if (mint::can_ntt()) return fps_inv_dense_ntt(F);
  const int N = len(F);
  vc<mint> R = {mint(1) / F[0]};
  vc<mint> p;
  int m = 1;
  while (m < N) {
    p = convolution(R, R);
    p.resize(m + m);
    vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
    p = convolution(p, f);
    R.resize(m + m);
    FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
    m += m;
  }
  R.resize(N);
  return R;
}

template <typename mint>
vc<mint> fps_inv(const vc<mint>& f) {
  assert(f[0] != mint(0));
  int n = count_terms(f);
  int t = (mint::can_ntt() ? 160 : 820);
  return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));
}
#line 5 "/home/maspy/compro/library/poly/fps_div.hpp"

// f/g. f の長さで出力される.
template <typename mint, bool SPARSE = false>
vc<mint> fps_div(vc<mint> f, vc<mint> g) {
  if (SPARSE || count_terms(g) < 200) return fps_div_sparse(f, g);
  int n = len(f);
  g.resize(n);
  g = fps_inv<mint>(g);
  f = convolution(f, g);
  f.resize(n);
  return f;
}

// f/g ただし g は sparse
template <typename mint>
vc<mint> fps_div_sparse(vc<mint> f, vc<mint>& g) {
  if (g[0] != mint(1)) {
    mint cf = g[0].inverse();
    for (auto&& x: f) x *= cf;
    for (auto&& x: g) x *= cf;
  }

  vc<pair<int, mint>> dat;
  FOR(i, 1, len(g)) if (g[i] != mint(0)) dat.eb(i, -g[i]);
  FOR(i, len(f)) {
    for (auto&& [j, x]: dat) {
      if (i >= j) f[i] += x * f[i - j];
    }
  }
  return f;
}
#line 2 "/home/maspy/compro/library/poly/ntt_doubling.hpp"

template <typename mint>
void ntt_doubling(vector<mint>& a) {
  const int rank2 = mint::ntt_info().fi;
  static array<mint, 30> root;
  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    FOR_R(i, rank2) { root[i] = root[i + 1] * root[i + 1]; }
  }

  const int M = (int)a.size();
  auto b = a;
  ntt(b, 1);
  mint r = 1, zeta = root[topbit(2 * M)];
  FOR(i, M) b[i] *= r, r *= zeta;
  ntt(b, 0);
  copy(begin(b), end(b), back_inserter(a));
}
#line 3 "/home/maspy/compro/library/poly/coef_of_rational_fps.hpp"

template <typename mint>
mint coef_of_rational_fps_small(vector<mint> P, vector<mint> Q, ll N) {
  assert(len(Q) <= 16);
  int m = len(Q) - 1;
  assert(len(P) == m);
  if (m == 0) return mint(0);
  vc<u32> Q32(m + 1);
  FOR(i, m + 1) Q32[i] = (-Q[i]).val;

  using poly = vc<u64>;
  auto dfs = [&](auto& dfs, const ll N) -> poly {
    // x^N mod G
    if (N == 0) return {1};
    poly f = dfs(dfs, N / 2);
    poly g(len(f) * 2 - 1 + (N & 1));
    FOR(i, len(f)) FOR(j, len(f)) { g[i + j + (N & 1)] += f[i] * f[j]; }
    FOR(i, len(g)) g[i] = mint(g[i]).val;
    FOR_R(i, len(g)) {
      g[i] = mint(g[i]).val;
      if (i >= m) FOR(j, 1, len(Q)) g[i - j] += Q32[j] * g[i];
    }
    g.resize(m);
    return g;
  };
  poly f = dfs(dfs, N);
  FOR(i, m) { FOR(j, 1, i + 1) P[i] -= Q[j] * P[i - j]; }
  u64 res = 0;
  FOR(i, m) res += f[i] * P[i].val;
  return res;
}

template <typename mint>
mint coef_of_rational_fps_ntt(vector<mint> P, vector<mint> Q, ll N) {
  int log = 0;
  while ((1 << log) < len(Q)) ++log;
  int n = 1 << log;
  P.resize(2 * n), Q.resize(2 * n);
  ntt(P, 0), ntt(Q, 0);
  vc<int> btr(n);
  FOR(i, n) { btr[i] = (btr[i >> 1] >> 1) + ((i & 1) << (log - 1)); }

  int t = mint::ntt_info().fi;
  mint r = mint::ntt_info().se;
  mint dw = r.inverse().pow((1 << t) / (2 * n));

  vc<mint> S, T;
  while (N >= n) {
    mint w = inv<mint>(2);
    T.resize(n);
    FOR(i, n) T[i] = Q[2 * i + 0] * Q[2 * i + 1];
    S.resize(n);
    if (N & 1) {
      for (auto& i: btr) {
        S[i] = (P[2 * i] * Q[2 * i + 1] - P[2 * i + 1] * Q[2 * i]) * w;
        w *= dw;
      }
    } else {
      FOR(i, n) {
        S[i] = (P[2 * i] * Q[2 * i + 1] + P[2 * i + 1] * Q[2 * i]) * w;
      }
    }
    swap(P, S), swap(Q, T);
    N >>= 1;
    if (N < n) break;
    ntt_doubling(P);
    ntt_doubling(Q);
  }
  ntt(P, 1), ntt(Q, 1);
  return fps_div(P, Q)[N];
}

template <typename mint>
mint coef_of_rational_fps_convolution(vector<mint> P, vector<mint> Q, ll N) {
  P.resize(len(Q) - 1);
  if (len(P) == 0) return 0;
  while (N >= len(P)) {
    vc<mint> Q1 = Q;
    FOR(i, len(Q1)) if (i & 1) Q1[i] = -Q1[i];
    P = convolution(P, Q1);
    Q = convolution(Q, Q1);
    FOR(i, len(Q1)) Q[i] = Q[2 * i];
    FOR(i, len(Q1) - 1) P[i] = P[2 * i | (N & 1)];
    P.resize(len(Q1) - 1);
    Q.resize(len(Q1));
    N /= 2;
  }
  return fps_div(P, Q)[N];
}

template <typename mint>
mint coef_of_rational_fps(vector<mint> P, vector<mint> Q, ll N) {
  assert(len(P) < len(Q) && Q[0] == mint(1));
  if (N == 0) return (P.empty() ? mint(0) : P[0]);
  int n = len(Q);
  if (mint::ntt_info().fi != -1) {
    if (n <= 10) {
      return coef_of_rational_fps_small(P, Q, N);
    } else {
      return coef_of_rational_fps_ntt(P, Q, N);
    }
  }
  return (n <= 16 ? coef_of_rational_fps_small(P, Q, N)
                  : coef_of_rational_fps_convolution(P, Q, N));
}
#line 1 "/home/maspy/compro/library/graph/tree_walk_generating_function.hpp"

#line 2 "/home/maspy/compro/library/graph/tree.hpp"

#line 4 "/home/maspy/compro/library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }
  // root を根とした場合の lca
  int LCA_root(int u, int v, int root) {
    return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);
  }
  int lca(int u, int v) { return LCA(u, v); }
  int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }
};
#line 2 "/home/maspy/compro/library/graph/ds/static_toptree.hpp"

/*
tute さんの実装 https://yukicoder.me/submissions/838092 を参考にしている.
いわゆる toptree (辺からはじめてマージ過程を木にする)とは少し異なるはず.
木を「heavy path 上の辺で分割」「根を virtual にする」
「light edges の分割」「light edge を消す」で頂点に分割していく.
逆にたどれば,1 頂点からはじめて木全体を作る高さ O(logN) の木になる.
高さについて:https://www.mathenachia.blog/mergetech-and-logn/
・lch == rch == -1:頂点
・rch == -1:
  ・heavy なら light の集約に頂点を付加したもの
  ・light なら 根付き木に light edge を付加したもの
・子が 2 つ
  ・heavy なら heavy path を辺で結合したもの
  ・light なら light edge たちのマージ
*/
template <typename TREE>
struct Static_TopTree {
  TREE &tree;

  vc<int> par, lch, rch, A, B;
  vc<bool> heavy;

  Static_TopTree(TREE &tree) : tree(tree) {
    int root = tree.V[0];
    build(root);
    // relabel
    int n = len(par);
    reverse(all(par)), reverse(all(lch)), reverse(all(rch)), reverse(all(A)),
        reverse(all(B)), reverse(all(heavy));
    for (auto &x: par) x = (x == -1 ? -1 : n - 1 - x);
    for (auto &x: lch) x = (x == -1 ? -1 : n - 1 - x);
    for (auto &x: rch) x = (x == -1 ? -1 : n - 1 - x);
  }

  // 木全体での集約値を得る
  // from_vertex(v)
  // add_vertex(x, v)
  // add_edge(x, u, v)  : u が親
  // merge_light(x, y)
  // merge_heavy(x, y, a, b, c, d)  : [a,b] + [c,d] = [a,d]
  template <typename Data, typename F1, typename F2, typename F3, typename F4,
            typename F5>
  Data tree_dp(F1 from_vertex, F2 add_vertex, F3 add_edge, F4 merge_light,
               F5 merge_heavy) {
    auto dfs = [&](auto &dfs, int k) -> Data {
      if (lch[k] == -1 && rch[k] == -1) { return from_vertex(A[k]); }
      if (rch[k] == -1) {
        Data x = dfs(dfs, lch[k]);
        if (heavy[k]) {
          return add_vertex(x, A[k]);
        } else {
          return add_edge(x, A[k], B[lch[k]]);
        }
      }
      Data x = dfs(dfs, lch[k]);
      Data y = dfs(dfs, rch[k]);
      if (heavy[k]) {
        return merge_heavy(x, y, A[lch[k]], B[lch[k]], A[rch[k]], B[rch[k]]);
      }
      return merge_light(x, y);
    };
    return dfs(dfs, 0);
  }

private:
  int add_node(int l, int r, int a, int b, bool h) {
    int ret = len(par);
    par.eb(-1), lch.eb(l), rch.eb(r), A.eb(a), B.eb(b), heavy.eb(h);
    if (l != -1) par[l] = ret;
    if (r != -1) par[r] = ret;
    return ret;
  }

  int build(int v) {
    // v は heavy path の根なので v を根とする部分木に対応するノードを作る
    assert(tree.head[v] == v);
    auto path = tree.heavy_path_at(v);
    reverse(all(path));

    auto dfs = [&](auto &dfs, int l, int r) -> int {
      // path[l:r)
      if (l + 1 < r) {
        int m = (l + r) / 2;
        int x = dfs(dfs, l, m);
        int y = dfs(dfs, m, r);
        return add_node(x, y, path[l], path[r - 1], true);
      }
      assert(r == l + 1);
      int me = path[l];
      // sz, idx
      pqg<pair<int, int>> que;
      for (auto &to: tree.collect_light(me)) {
        int x = build(to);
        int y = add_node(x, -1, me, me, false);
        que.emplace(tree.subtree_size(to), y);
      }
      if (que.empty()) { return add_node(-1, -1, me, me, true); }
      while (len(que) >= 2) {
        auto [s1, x] = POP(que);
        auto [s2, y] = POP(que);
        int z = add_node(x, y, me, me, false);
        que.emplace(s1 + s2, z);
      }
      auto [s, x] = POP(que);
      return add_node(x, -1, me, me, true);
    };
    return dfs(dfs, 0, len(path));
  }
};
#line 3 "/home/maspy/compro/library/graph/shortest_path/bfs01.hpp"

template <typename T, typename GT>
pair<vc<T>, vc<int>> bfs01(GT& G, int v) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  deque<int> que;

  dist[v] = 0;
  que.push_front(v);
  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par};
}

// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) {
  assert(G.is_prepared());
  int N = G.N;
  vc<T> dist(N, infty<T>);
  vc<int> par(N, -1);
  vc<int> root(N, -1);
  deque<int> que;

  for (auto&& v: vs) {
    dist[v] = 0;
    root[v] = v;
    que.push_front(v);
  }

  while (!que.empty()) {
    auto v = que.front();
    que.pop_front();
    for (auto&& e: G[v]) {
      if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
        dist[e.to] = dist[e.frm] + e.cost;
        root[e.to] = root[e.frm];
        par[e.to] = e.frm;
        if (e.cost == 0)
          que.push_front(e.to);
        else
          que.push_back(e.to);
      }
    }
  }
  return {dist, par, root};
}
#line 2 "/home/maspy/compro/library/ds/unionfind/unionfind.hpp"

struct UnionFind {
  int n, n_comp;
  vc<int> dat; // par or (-size)
  UnionFind(int n = 0) { build(n); }

  void build(int m) {
    n = m, n_comp = m;
    dat.assign(n, -1);
  }

  void reset() { build(n); }

  int operator[](int x) {
    while (dat[x] >= 0) {
      int pp = dat[dat[x]];
      if (pp < 0) { return dat[x]; }
      x = dat[x] = pp;
    }
    return x;
  }

  ll size(int x) {
    x = (*this)[x];
    return -dat[x];
  }

  bool merge(int x, int y) {
    x = (*this)[x], y = (*this)[y];
    if (x == y) return false;
    if (-dat[x] < -dat[y]) swap(x, y);
    dat[x] += dat[y], dat[y] = x, n_comp--;
    return true;
  }
};
#line 4 "/home/maspy/compro/library/graph/characteristic_polynomial_of_tree_adjacency_matrix.hpp"

// det(I-xA) の計算 (固有多項式の reverse になっている)
// weight(i,j):A[i][j]
// 偶数次だけしか出てこないので loop ありより高速
template <typename mint, typename F>
vc<mint> characteristic_poly_of_tree_adjacency_matrix_not_allow_loop(
    Graph<int, 0>& G, F weight) {
  // int N = G.N;
  // vv(mint, A, N, N);
  // vv(mint, B, N, N);
  // FOR(i, N) A[i][i] = 1;
  // FOR(i, N) {
  //   for (auto& e: G[i]) { B[i][e.to] = -weight(i, e.to); }
  // }
  // return det_A_plus_xB(A, B);
  using poly = vc<mint>;
  Tree<Graph<int, 0>> tree(G);
  Static_TopTree<decltype(tree)> STT(tree);

  using Data = array<array<poly, 2>, 2>;
  auto add = [&](poly& f, poly& g, int s, mint wt = 1) -> void {
    if (g.empty()) return;
    if (len(f) < len(g) + s) f.resize(len(g) + s);
    FOR(i, len(g)) f[s + i] += g[i] * wt;
  };
  auto from_vertex = [&](int v) -> Data {
    Data X;
    X[0][0] = poly{mint(1)};
    return X;
  };
  auto add_vertex = [&](Data& X, int v) -> Data { return X; };
  auto add_edge = [&](Data& X, int u, int v) -> Data {
    mint wt = -weight(u, v) * weight(v, u);
    Data Y;
    FOR(a, 2) {
      add(Y[0][0], X[a][0], 0);
      add(Y[1][1], X[a][0], 1, wt);
      add(Y[0][0], X[a][1], 0);
    }
    return Y;
  };
  auto merge_light = [&](Data& X, Data& Y) -> Data {
    poly &X0 = X[0][0], &X1 = X[1][1];
    poly &Y0 = Y[0][0], &Y1 = Y[1][1];
    poly A = convolution(X0, Y0);
    poly B = convolution(X0, Y1);
    poly C = convolution(X1, Y0);
    Data Z;
    add(Z[0][0], A, 0), add(Z[1][1], B, 0), add(Z[1][1], C, 0);
    return Z;
  };
  auto merge_heavy
      = [&](Data& X, Data& Y, int va, int vb, int vc, int vd) -> Data {
    Data Z;
    mint wt = -weight(vb, vc) * weight(vc, vb);
    FOR(a, 2) FOR(d, 2) {
      poly f0 = X[a][0], &f1 = X[a][1];
      poly g0 = Y[0][d], &g1 = Y[1][d];
      // 辺を使う
      poly f = convolution(f0, g0);
      int x = (va != vb ? a : 1);
      int y = (vc != vd ? d : 1);
      add(Z[x][y], f, 1, wt);
      // 辺を使わない
      add(f0, f1, 0), add(g0, g1, 0);
      f = convolution(f0, g0);
      add(Z[a][d], f, 0);
    }
    return Z;
  };

  Data X = STT.tree_dp<Data>(from_vertex, add_vertex, add_edge, merge_light,
                             merge_heavy);
  vc<mint> ANS(G.N + 1);
  FOR(a, 2) FOR(b, 2) {
    FOR(i, len(X[a][b])) { ANS[2 * i] += X[a][b][i]; }
  }
  return ANS;
}

template <typename mint, typename F>
vc<mint> characteristic_poly_of_tree_adjacency_matrix_allow_loop(
    Graph<int, 0>& G, F weight) {
  // 点とマッチングに分解
  // マッチング:-w[i][j]w[j][i]x^2
  // 点:1-w[i][i]x
  using poly = vc<mint>;
  Tree<Graph<int, 0>> tree(G);
  Static_TopTree<decltype(tree)> STT(tree);

  using Data = array<array<poly, 2>, 2>;
  auto add = [&](poly& f, poly& g, int s, mint wt = 1) -> void {
    if (g.empty()) return;
    if (len(f) < len(g) + s) f.resize(len(g) + s);
    FOR(i, len(g)) f[s + i] += g[i] * wt;
  };
  auto from_vertex = [&](int v) -> Data {
    mint wt = weight(v, v);
    Data X;
    X[0][0] = poly{mint(1)};
    X[1][1] = poly{mint(1), -wt};
    return X;
  };
  auto add_vertex = [&](Data& X, int v) -> Data {
    mint wt = weight(v, v);
    // 1-wtx
    add(X[1][1], X[0][0], 0, mint(1));
    add(X[1][1], X[0][0], 1, -wt);
    return X;
  };
  auto add_edge = [&](Data& X, int u, int v) -> Data {
    if (X[0][1].empty()) { X[1][0] = X[0][0]; }
    mint wt = weight(u, v) * weight(v, u);
    Data Y;
    add(Y[1][1], X[1][0], 2, -wt);
    add(Y[0][0], X[1][1], 0);
    return Y;
  };
  auto merge_light = [&](Data& X, Data& Y) -> Data {
    poly &X0 = X[0][0], &X1 = X[1][1];
    poly &Y0 = Y[0][0], &Y1 = Y[1][1];
    poly A = convolution(X0, Y0);
    poly B = convolution(X0, Y1);
    poly C = convolution(X1, Y0);
    Data Z;
    add(Z[0][0], A, 0), add(Z[1][1], B, 0), add(Z[1][1], C, 0);
    return Z;
  };
  auto merge_heavy
      = [&](Data& X, Data& Y, int va, int vb, int vc, int vd) -> Data {
    Data Z;
    mint wt = weight(vb, vc) * weight(vc, vb);
    FOR(a, 2) FOR(b, 2) FOR(c, 2) FOR(d, 2) {
      bool non_use = 1;
      bool use = (b == 0) && (c == 0);
      if (va != vb && b == 0) non_use = 0;
      if (vc != vd && c == 0) non_use = 0;
      if (!non_use && !use) continue;
      poly f = convolution(X[a][b], Y[c][d]);
      if (non_use) add(Z[a][d], f, 0);
      if (use) {
        int x = (va != vb ? a : 1);
        int y = (vc != vd ? d : 1);
        add(Z[x][y], f, 2, -wt);
      }
    }
    return Z;
  };

  Data X = STT.tree_dp<Data>(from_vertex, add_vertex, add_edge, merge_light,
                             merge_heavy);
  poly& ANS = X[1][1];
  return ANS;
}

// det(I-xA) の計算 (固有多項式の reverse になっている)
// weight(i,j):A[i][j]
template <bool ALLOW_LOOP, typename mint, typename F>
vc<mint> characteristic_poly_of_tree_adjacency_matrix(Graph<int, 0>& G,
                                                      F weight) {
  if constexpr (ALLOW_LOOP) {
    return characteristic_poly_of_tree_adjacency_matrix_allow_loop<mint>(
        G, weight);
  } else {
    return characteristic_poly_of_tree_adjacency_matrix_not_allow_loop<mint>(
        G, weight);
  }
}
#line 2 "/home/maspy/compro/library/poly/convolution_all.hpp"

#line 4 "/home/maspy/compro/library/poly/convolution_all.hpp"

template <typename T>
vc<T> convolution_all(vc<vc<T>>& polys) {
  if (len(polys) == 0) return {T(1)};
  while (1) {
    int n = len(polys);
    if (n == 1) break;
    int m = ceil(n, 2);
    FOR(i, m) {
      if (2 * i + 1 == n) {
        polys[i] = polys[2 * i];
      } else {
        polys[i] = convolution(polys[2 * i], polys[2 * i + 1]);
      }
    }
    polys.resize(m);
  }
  return polys[0];
}
#line 4 "/home/maspy/compro/library/graph/tree_walk_generating_function.hpp"

template <bool ALLOW_LOOP, typename mint, typename F>
pair<vc<mint>, vc<mint>> tree_walk_generating_function(Graph<int, 0>& G, int s,
                                                       int t, F weight) {
  int N = G.N;
  // 分母
  auto f = characteristic_poly_of_tree_adjacency_matrix<ALLOW_LOOP, mint>(
      G, weight);
  // 分子
  // (s,t) パスに沿って成分をかけたものの符号調整 + 他の成分
  using poly = vc<mint>;
  vc<poly> polys;
  pair<int, mint> path_poly = {0, mint(1)};
  vc<bool> on_path(N);
  auto [dist, par] = bfs01<int>(G, s);
  on_path[t] = 1;
  while (t != s) {
    mint w = weight(par[t], t);
    t = par[t], on_path[t] = 1;
    path_poly.fi += 1, path_poly.se *= w; // +wx
  }
  UnionFind uf(N);
  for (auto& e: G.edges) {
    if (on_path[e.frm] || on_path[e.to]) continue;
    uf.merge(e.frm, e.to);
  }
  vvc<int> comp(N);
  FOR(v, N) comp[uf[v]].eb(v);
  FOR(r, N) {
    if (on_path[r] || uf[r] != r) continue;
    vc<int>& V = comp[r];
    Graph<int, 0> H = G.rearrange(V);
    poly f = characteristic_poly_of_tree_adjacency_matrix<ALLOW_LOOP, mint>(
        H, [&](int i, int j) -> mint { return weight(V[i], V[j]); });
    polys.eb(f);
  }
  poly B = convolution_all<mint>(polys);
  for (auto& x: B) x *= path_poly.se;
  int m = path_poly.fi;
  poly g(len(B) + m);
  FOR(i, len(B)) g[m + i] = path_poly.se * B[i];
  return {f, g};
}
#line 11 "main.cpp"

using mint = modint998;
using poly = vc<mint>;

void solve() {
  LL(N, M, S, T);
  --S, --T;
  Graph<int, 0> G(N);
  G.read_tree();

  auto [f, g] = tree_walk_generating_function<true, mint>(
      G, S, T, [&](int i, int j) -> mint { return 1; });

  mint ANS = coef_of_rational_fps<mint>(g, f, M);
  print(ANS);
}

signed main() {
  int T = 1;
  // INT(T);
  FOR(T) solve();
  return 0;
}
0