結果
問題 | No.2587 Random Walk on Tree |
ユーザー | 👑 Nachia |
提出日時 | 2023-12-15 21:53:11 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 9,490 ms / 10,000 ms |
コード長 | 40,819 bytes |
コンパイル時間 | 4,763 ms |
コンパイル使用メモリ | 207,580 KB |
実行使用メモリ | 136,748 KB |
最終ジャッジ日時 | 2024-09-27 13:22:59 |
合計ジャッジ時間 | 118,020 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,940 KB |
testcase_02 | AC | 115 ms
8,552 KB |
testcase_03 | AC | 115 ms
8,564 KB |
testcase_04 | AC | 136 ms
9,488 KB |
testcase_05 | AC | 137 ms
9,516 KB |
testcase_06 | AC | 135 ms
9,648 KB |
testcase_07 | AC | 131 ms
9,452 KB |
testcase_08 | AC | 132 ms
9,388 KB |
testcase_09 | AC | 129 ms
9,328 KB |
testcase_10 | AC | 130 ms
9,512 KB |
testcase_11 | AC | 69 ms
6,940 KB |
testcase_12 | AC | 187 ms
10,296 KB |
testcase_13 | AC | 182 ms
10,296 KB |
testcase_14 | AC | 145 ms
9,708 KB |
testcase_15 | AC | 3,178 ms
39,604 KB |
testcase_16 | AC | 2,161 ms
38,184 KB |
testcase_17 | AC | 2,941 ms
35,864 KB |
testcase_18 | AC | 461 ms
13,356 KB |
testcase_19 | AC | 8,624 ms
109,740 KB |
testcase_20 | AC | 2,826 ms
38,524 KB |
testcase_21 | AC | 9,342 ms
119,000 KB |
testcase_22 | AC | 9,179 ms
136,748 KB |
testcase_23 | AC | 9,294 ms
122,444 KB |
testcase_24 | AC | 5,014 ms
60,632 KB |
testcase_25 | AC | 874 ms
30,680 KB |
testcase_26 | AC | 9,481 ms
125,976 KB |
testcase_27 | AC | 9,490 ms
135,744 KB |
testcase_28 | AC | 5,393 ms
64,580 KB |
testcase_29 | AC | 5,695 ms
69,056 KB |
testcase_30 | AC | 4,794 ms
60,536 KB |
testcase_31 | AC | 4,859 ms
64,492 KB |
testcase_32 | AC | 1,957 ms
28,168 KB |
testcase_33 | AC | 102 ms
8,680 KB |
testcase_34 | AC | 2,976 ms
91,008 KB |
testcase_35 | AC | 2,912 ms
93,688 KB |
testcase_36 | AC | 2,961 ms
93,848 KB |
testcase_37 | AC | 3,064 ms
92,056 KB |
testcase_38 | AC | 1,427 ms
21,032 KB |
testcase_39 | AC | 1,521 ms
27,236 KB |
ソースコード
#ifdef NACHIA // #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #include <iostream> #include <string> #include <vector> #include <algorithm> #include <utility> #include <queue> #include <array> #include <cmath> #include <atcoder/modint> using namespace std; using i64 = long long; using u64 = unsigned long long; #define rep(i,n) for(i64 i=0; i<(i64)(n); i++) #define repr(i,n) for(i64 i=(i64)(n)-1; i>=0; i--) const i64 INF = 1001001001001001001; const char* yn(bool x){ return x ? "Yes" : "No"; } template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; } template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; } template<typename A> using nega_queue = priority_queue<A,vector<A>,greater<A>>; using Modint = atcoder::static_modint<998244353>; #include <iterator> #include <functional> template<class Elem> struct vec; template<class Iter> struct seq_view{ using Ref = typename std::iterator_traits<Iter>::reference; using Elem = typename std::iterator_traits<Iter>::value_type; Iter a, b; Iter begin() const { return a; } Iter end() const { return b; } int size() const { return (int)(b-a); } seq_view(Iter first, Iter last) : a(first), b(last) {} seq_view sort() const { std::sort(a, b); return *this; } Ref& operator[](int x){ return *(a+x); } template<class F = std::less<Elem>, class ret = vec<int>> ret sorti(F f = F()) const { ret x(size()); for(int i=0; i<size(); i++) x[i] = i; x().sort([&](int l, int r){ return f(a[l],a[r]); }); return x; } template<class ret = vec<Elem>> ret col() const { return ret(begin(), end()); } template<class F = std::equal_to<Elem>, class ret = vec<std::pair<Elem, int>>> ret rle(F eq = F()) const { auto x = ret(); for(auto& a : (*this)){ if(x.size() == 0 || !eq(x[x.size()-1].first, a)) x.emp(a, 1); else x[x.size()-1].second++; } return x; } template<class F> seq_view sort(F f) const { std::sort(a, b, f); return *this; } Iter uni() const { return std::unique(a, b); } Iter lb(const Elem& x) const { return std::lower_bound(a, b, x); } Iter ub(const Elem& x) const { return std::upper_bound(a, b, x); } int lbi(const Elem& x) const { return lb(x) - a; } int ubi(const Elem& x) const { return ub(x) - a; } seq_view bound(const Elem& l, const Elem& r) const { return { lb(l), lb(r) }; } template<class F> Iter lb(const Elem& x, F f) const { return std::lower_bound(a, b, x, f); } template<class F> Iter ub(const Elem& x, F f) const { return std::upper_bound(a, b, x, f); } template<class F> Iter when_true_to_false(F f) const { if(a == b) return a; return std::lower_bound(a, b, *a, [&](const Elem& x, const Elem&){ return f(x); }); } seq_view same(Elem x) const { return { lb(x), ub(x) }; } template<class F> auto map(F f) const { vec<typename Iter::value_type> r; for(auto& x : *this) r.emp(f(x)); return r; } Iter max() const { return std::max_element(a, b); } Iter min() const { return std::min_element(a, b); } template<class F = std::less<Elem>> Iter min(F f) const { return std::min_element(a, b, f); } seq_view rev() const { std::reverse(a, b); return *this; } }; template<class Elem> struct vec { using Base = typename std::vector<Elem>; using Iter = typename Base::iterator; using CIter = typename Base::const_iterator; using View = seq_view<Iter>; using CView = seq_view<CIter>; vec(){} explicit vec(int n, const Elem& value = Elem()) : a(0<n?n:0, value) {} template <class I2> vec(I2 first, I2 last) : a(first, last) {} vec(std::initializer_list<Elem> il) : a(std::move(il)) {} vec(Base b) : a(std::move(b)) {} operator Base() const { return a; } Iter begin(){ return a.begin(); } CIter begin() const { return a.begin(); } Iter end(){ return a.end(); } CIter end() const { return a.end(); } int size() const { return a.size(); } bool empty() const { return a.empty(); } Elem& back(){ return a.back(); } const Elem& back() const { return a.back(); } vec sortunied(){ vec x = *this; x().sort(); x.a.erase(x().uni(), x.end()); return x; } Iter operator()(int x){ return a.begin() + x; } CIter operator()(int x) const { return a.begin() + x; } View operator()(int l, int r){ return { (*this)(l), (*this)(r) }; } CView operator()(int l, int r) const { return { (*this)(l), (*this)(r) }; } View operator()(){ return (*this)(0,size()); } CView operator()() const { return (*this)(0,size()); } Elem& operator[](int x){ return a[x]; } const Elem& operator[](int x) const { return a[x]; } Base& operator*(){ return a; } const Base& operator*() const { return a; } vec& push(Elem args){ a.push_back(std::move(args)); return *this; } template<class... Args> vec& emp(Args &&... args){ a.emplace_back(std::forward<Args>(args) ...); return *this; } template<class Range> vec& app(Range& x){ for(auto& v : a) emp(v); } Elem pop(){ Elem x = std::move(a.back()); a.pop_back(); return x; } bool operator==(const vec& r) const { return a == r.a; } bool operator!=(const vec& r) const { return a != r.a; } bool operator<(const vec& r) const { return a < r.a; } bool operator<=(const vec& r) const { return a <= r.a; } bool operator>(const vec& r) const { return a > r.a; } bool operator>=(const vec& r) const { return a >= r.a; } vec<vec<Elem>> pile(int n) const { return vec<vec<Elem>>(n, *this); } template<class F> vec& filter(F f){ int p = 0; for(int q=0; q<size(); q++) if(f(a[q])) std::swap(a[p++],a[q]); a.resize(p); return *this; } private: Base a; }; template<class IStr, class U, class T> IStr& operator>>(IStr& is, vec<std::pair<U,T>>& v){ for(auto& x:v){ is >> x.first >> x.second; } return is; } template<class IStr, class T> IStr& operator>>(IStr& is, vec<T>& v){ for(auto& x:v){ is >> x; } return is; } template<class OStr, class T> OStr& operator<<(OStr& os, const vec<T>& v){ for(int i=0; i<v.size(); i++){ if(i){ os << ' '; } os << v[i]; } return os; } #include <cassert> namespace nachia{ template<unsigned int MOD> struct PrimitiveRoot{ using u64 = unsigned long long; static constexpr u64 powm(u64 a, u64 i) { u64 res = 1, aa = a; while(i){ if(i & 1) res = res * aa % MOD; aa = aa * aa % MOD; i /= 2; } return res; } static constexpr bool ExamineVal(unsigned int g){ unsigned int t = MOD - 1; for(u64 d=2; d*d<=t; d++) if(t % d == 0){ if(powm(g, (MOD - 1) / d) == 1) return false; while(t % d == 0) t /= d; } if(t != 1) if(powm(g, (MOD - 1) / t) == 1) return false; return true; } static constexpr unsigned int GetVal(){ for(unsigned int x=2; x<MOD; x++) if(ExamineVal(x)) return x; return 0; } static const unsigned int val = GetVal(); }; } // namespace nachia namespace nachia{ template<class Modint> class Comb{ private: static constexpr int MOD = Modint::mod(); std::vector<Modint> F; std::vector<Modint> iF; public: void extend(int newN){ int prevN = (int)F.size() - 1; if(newN >= MOD) newN = MOD - 1; if(prevN >= newN) return; F.resize(newN+1); iF.resize(newN+1); for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i); iF[newN] = F[newN].inv(); for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i); } Comb(int n = 1){ F.assign(2, Modint(1)); iF.assign(2, Modint(1)); extend(n); } Modint factorial(int n) const { return F[n]; } Modint invFactorial(int n) const { return iF[n]; } Modint invOf(int n) const { return iF[n] * F[n-1]; } Modint comb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[r] * iF[n-r]; } Modint invComb(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[r] * F[n-r]; } Modint perm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return F[n] * iF[n-r]; } Modint invPerm(int n, int r) const { if(n < 0 || n < r || r < 0) return Modint(0); return iF[n] * F[n-r]; } Modint operator()(int n, int r) const { return comb(n,r); } }; } // namespace nachia namespace nachia{ int Popcount(unsigned long long c) noexcept { #ifdef __GNUC__ return __builtin_popcountll(c); #else c = (c & (~0ull/3)) + ((c >> 1) & (~0ull/3)); c = (c & (~0ull/5)) + ((c >> 2) & (~0ull/5)); c = (c & (~0ull/17)) + ((c >> 4) & (~0ull/17)); c = (c * (~0ull/257)) >> 56; return c; #endif } // please ensure x != 0 int MsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return 63 - __builtin_clzll(x); #else using u64 = unsigned long long; int q = (n >> 32) ? 32 : 0; auto m = n >> q; constexpr u64 hi = 0x8888'8888; constexpr u64 mi = 0x1111'1111; m = (((m | ~(hi - (m & ~hi))) & hi) * mi) >> 35; m = (((m | ~(hi - (n & ~hi))) & hi) * mi) >> 31; q += (m & 0xf) << 2; q += 0x3333'3333'2222'1100 >> (((n >> q) & 0xf) << 2) & 0xf return q; #endif } // please ensure x != 0 int LsbIndex(unsigned long long x) noexcept { #ifdef __GNUC__ return __builtin_ctzll(x); #else return MsbIndex(x & -x); #endif } } namespace nachia { template<class mint> struct NttInterface{ template<class Iter> void Butterfly(Iter, int) const {} template<class Iter> void IButterfly(Iter, int) const {} template<class Iter> void BitReversal(Iter a, int N) const { for(int i=0, j=0; j<N; j++){ if(i < j) std::swap(a[i], a[j]); for(int k = N>>1; k > (i^=k); k>>=1); } } }; } // namespace nachia namespace nachia{ constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } template <class mint> struct NttFromAcl : NttInterface<mint> { using u32 = unsigned int; using u64 = unsigned long long; static int ceil_pow2(int n) { int x = 0; while ((1U << x) < (u32)(n)) x++; return x; } struct fft_info { static constexpr u32 g = nachia::PrimitiveRoot<mint::mod()>::val; static constexpr int rank2 = bsf_constexpr(mint::mod()-1); std::array<mint, rank2+1> root; std::array<mint, rank2+1> iroot; std::array<mint, std::max(0, rank2-1)> rate2; std::array<mint, std::max(0, rank2-1)> irate2; std::array<mint, std::max(0, rank2-2)> rate3; std::array<mint, std::max(0, rank2-2)> irate3; fft_info(){ root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for(int i=rank2-1; i>=0; i--){ root[i] = root[i+1] * root[i+1]; iroot[i] = iroot[i+1] * iroot[i+1]; } mint prod = 1, iprod = 1; for(int i=0; i<=rank2-2; i++){ rate2[i] = root[i+2] * prod; irate2[i] = iroot[i+2] * iprod; prod *= iroot[i+2]; iprod *= root[i+2]; } prod = 1; iprod = 1; for(int i=0; i<=rank2-3; i++){ rate3[i] = root[i+3] * prod; irate3[i] = iroot[i+3] * iprod; prod *= iroot[i+3]; iprod *= root[i+3]; } } }; template<class RandomAccessIterator> void Butterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; int len = 0; while(len < h){ if(h-len == 1){ int p = 1 << (h-len-1); mint rot = 1; for(int s=0; s<(1<<len); s++){ int offset = s << (h-len); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p] * rot; a[i+offset] = l+r; a[i+offset+p] = l-r; } if(s+1 != (1<<len)) rot *= info.rate2[LsbIndex(~(u32)(s))]; } len++; } else { int p = 1 << (h-len-2); mint rot = 1, imag = info.root[2]; for(int s=0; s<(1<<len); s++){ mint rot2 = rot * rot; mint rot3 = rot2 * rot; int offset = s << (h-len); for(int i=0; i<p; i++){ auto mod2 = 1ULL * mint::mod() * mint::mod(); auto a0 = 1ULL * a[i+offset].val(); auto a1 = 1ULL * a[i+offset+p].val() * rot.val(); auto a2 = 1ULL * a[i+offset+2*p].val() * rot2.val(); auto a3 = 1ULL * a[i+offset+3*p].val() * rot3.val(); auto a1na3imag = 1ULL * mint(a1 + mod2 - a3).val() * imag.val(); auto na2 = mod2 - a2; a[i+offset] = a0 + a2 + a1 + a3; a[i+offset+1*p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i+offset+2*p] = a0 + na2 + a1na3imag; a[i+offset+3*p] = a0 + na2 + (mod2 - a1na3imag); } if(s+1 != (1<<len)) rot *= info.rate3[LsbIndex(~(u32)(s))]; } len += 2; } } } template<class RandomAccessIterator> void IButterfly(RandomAccessIterator a, int n) const { int h = ceil_pow2(n); static const fft_info info; constexpr int MOD = mint::mod(); int len = h; while(len){ if(len == 1){ int p = 1 << (h-len); mint irot = 1; for(int s=0; s<(1<<(len-1)); s++){ int offset = s << (h-len+1); for(int i=0; i<p; i++){ auto l = a[i+offset]; auto r = a[i+offset+p]; a[i+offset] = l+r; a[i+offset+p] = (u64)(MOD + l.val() - r.val()) * irot.val(); } if(s+1 != (1<<(len-1))) irot *= info.irate2[LsbIndex(~(u32)(s))]; } len--; } else { int p = 1 << (h-len); mint irot = 1, iimag = info.iroot[2]; for(int s=0; s<(1<<(len-2)); s++){ mint irot2 = irot * irot; mint irot3 = irot2 * irot; int offset = s << (h-len+2); for(int i=0; i<p; i++){ auto a0 = 1ULL * a[i+offset+0*p].val(); auto a1 = 1ULL * a[i+offset+1*p].val(); auto a2 = 1ULL * a[i+offset+2*p].val(); auto a3 = 1ULL * a[i+offset+3*p].val(); auto a2na3iimag = 1ULL * mint((MOD + a2 - a3) * iimag.val()).val(); a[i+offset] = a0 + a1 + a2 + a3; a[i+offset+1*p] = (a0 + (MOD - a1) + a2na3iimag) * irot.val(); a[i+offset+2*p] = (a0 + a1 + (MOD - a2) + (MOD - a3)) * irot2.val(); a[i+offset+3*p] = (a0 + (MOD - a1) + (MOD - a2na3iimag)) * irot3.val(); } if(s+1 != (1<<(len-2))) irot *= info.irate3[LsbIndex(~(u32)(s))]; } len -= 2; } } } }; } // namespace nachia namespace nachia { template<class Elem, class NttInst = NttFromAcl<Elem>> struct FpsNtt { public: using Fps = FpsNtt; using ElemTy = Elem; static constexpr unsigned int MOD = Elem::mod(); static constexpr int CONV_THRES = 30; static const NttInst nttInst; static const unsigned int zeta = nachia::PrimitiveRoot<MOD>::GetVal(); private: using u32 = unsigned int; static Elem ZeroElem() noexcept { return Elem(0); } static Elem OneElem() noexcept { return Elem(1); } static Comb<Elem> comb; std::vector<Elem> a; int RSZ(int& sz) const { return sz = (sz < 0 ? size() : sz); } public: int size() const noexcept { return a.size(); } Elem& operator[](int x) noexcept { return a[x]; } const Elem& operator[](int x) const noexcept { return a[x]; } Elem getCoeff(int x) const noexcept { return (0 <= x && x < size()) ? a[x] : ZeroElem(); } static Comb<Elem>& GetComb() { return comb; } static int BestNttSize(int x) noexcept { assert(x); return 1 << MsbIndex(x*2-1); } Fps move(){ return std::move(*this); } Fps& set(int i, Elem c){ a[i] = c; return *this; } Fps& removeLeadingZeros(){ int newsz = size(); while(newsz && a[newsz-1].val() == 0) newsz--; a.resize(newsz); if((int)a.capacity() / 4 > newsz) a.shrink_to_fit(); return *this; } FpsNtt(){} FpsNtt(int sz) : a(sz, ZeroElem()) {} FpsNtt(int sz, Elem e) : a(sz, e) {} FpsNtt(std::vector<Elem>&& src) : a(std::move(src)) {} FpsNtt(const std::vector<Elem>& src) : a(src) {} Fps& ntt() { capSize(BestNttSize(size())); nttInst.Butterfly(a.begin(), size()); return *this; } Fps& intt() { nttInst.IButterfly(a.begin(), a.size()); return times(Elem::raw(size()).inv()); } Fps nttDouble(Fps vanilla) const { int n = size(); assert(n == (n&-n)); // n is a power of 2 Elem q = Elem::raw(zeta).pow((Elem::mod() - 1) / (n*2)); Elem qq = OneElem(); for(int i=0; i<n; i++){ vanilla[i] *= qq; qq *= q; } vanilla.ntt(); Fps res = clip(0, n*2); for(int i=0; i<n; i++) res[n+i] = vanilla[i]; return res; } Fps nttDouble() const { return nttDouble(clip().intt().move()); } // Fps res(resSz); // for(int j=0; j<resSz-destL && j+srcL < srcR; j++) res[j+destL] = a.getCoeff(j+srcL) // if srcR is unspecified -> srcR = max(srcL, size()); // if resSz is unspecified -> resSz = destL + srcR - srcL Fps clip(int srcL, int srcR = -1, int destL = 0, int resSz = -1) const { srcR = RSZ(srcR); if(resSz < 0) resSz = destL + srcR - srcL; int rj = std::min(std::min(srcR, size()) - srcL, resSz - destL); Fps res(resSz); for(int j=std::max(0, -srcL); j<rj; j++) res[j+destL] = a[j+srcL]; return res; } Fps clip() const { return *this; } Fps& capSize(int l, int r) { if(r <= (int)size()) a.resize(r); if(size() <= l) a.resize(l, ZeroElem()); return *this; } Fps& capSize(int z){ a.resize(RSZ(z), ZeroElem()); return *this; } Fps& times(Elem x){ for(int i=0; i<size(); i++){ a[i] *= x; } return *this; } Fps& timesFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.factorial(i); } return *this; } Fps& timesInvFactorial(int z = -1){ comb.extend(RSZ(z)); for(int i=0; i<z; i++){ a[i] *= comb.invFactorial(i); } return *this; } Fps& clrRange(int l, int r){ for(int i=l; i<r; i++){ a[i] = ZeroElem(); } return *this; } Fps& negate(){ for(auto& e : a){ e = -e; } return *this; } Fps& mulEach(const Fps& other, int maxi = -1){ maxi = std::min(RSZ(maxi), std::min(size(), other.size())); for(int i=0; i<maxi; i++) a[i] *= other[i]; return *this; } Fps& reverse(int sz = -1){ RSZ(sz); std::reverse(a.begin(), a.begin() + sz); return *this; } static Fps convolution(const Fps& a, const Fps& b, int sz = -1){ if(std::min(a.size(), b.size()) <= CONV_THRES){ if(a.size() > b.size()) return convolution(b, a, sz); if(sz < 0) sz = std::max(0, a.size() + b.size() - 1); std::vector<Elem> res(sz); for(int i=0; i<a.size(); i++) for(int j=0; j<b.size() && i+j<sz; j++) res[i+j] += a[i] * b[j]; return res; } int Z = BestNttSize(a.size() + b.size() - 1); return a.clip(0, Z).ntt().mulEach(b.clip(0, Z).ntt()).intt().capSize(sz).move(); } Fps convolve(const Fps& r, int sz = -1) const { return convolution(*this, r, sz); } // 1 // ----- = 1 + f + f^2 + f^3 + ... // 1-f Fps powerSum(int sz) const { RSZ(sz); if(sz == 0) return {}; int q = std::min(sz, 32); Fps x = Fps(q).set(0, OneElem()).move(); for(int i=1; i<q; i++) for(int j=1; j<=std::min(i,(int)a.size()-1); j++) x[i] += x[i-j] * a[j]; while(x.size() < sz){ int hN = x.size(), N = hN*2; Fps a = x.clip(0, N).ntt().move(); Fps b = clip(0, N).ntt().mulEach(a).intt().clrRange(0,hN).ntt().mulEach(a).intt().move(); for(int i=0; i<hN; i++) b[i] = x[i]; std::swap(b, x); } return x.capSize(sz).move(); } Fps inv(int sz = -1) const { RSZ(sz); Elem iA0 = a[0].inv(); return clip(0, std::min(sz, size())).times(-iA0).set(0, ZeroElem()).powerSum(sz).times(iA0).move(); } Fps& difference(){ if(size() == 0) return *this; for(int i=0; i+1<size(); i++) a[i] = a[i+1] * Elem::raw(i+1); return capSize(size()-1); } Fps& integral(){ if(size() == 0) return capSize(1); capSize(size()+1); comb.extend(size()); for(int i=size()-1; i>=1; i--) a[i] = a[i-1] * comb.invOf(i); return set(0, ZeroElem()); } Fps& EgfToOgf(){ comb.extend(size()); for(int i=0; i<size(); i++) a[i] *= comb.factorial(i); return *this; } Fps& OgfToEgf(){ comb.extend(size()); for(int i=0; i<size(); i++) a[i] *= comb.invFactorial(i); return *this; } Fps log(int sz = -1){ RSZ(sz); assert(sz != 0); assert(a[0].val() == 1); return convolution(inv(sz), clip().difference(), sz-1).integral(); } Fps exp(int sz = -1){ RSZ(sz); Fps res = Fps(1).set(0, OneElem()); while(res.size() < sz){ auto z = res.size(); auto tmp = res.capSize(z*2).log().set(0, -OneElem()).move(); for(int i=0; i<z*2 && i<size(); i++) tmp[i] -= a[i]; auto resntt = res.clip().ntt().mulEach(tmp.ntt()).intt().move(); for(int i=z; i<z*2; i++) res[i] = -resntt[i]; } return res.capSize(0, sz).move(); } Fps pow(unsigned long long k, int sz = -1){ int n = RSZ(sz); if(k == 0) return Fps(n).set(0, OneElem()).move(); int ctz = 0; while(ctz<n && a[ctz].val() == 0) ctz++; if((unsigned long long)ctz >= (n-1) / k + 1) return Fps(n); Elem a0 = a[ctz]; return clip(ctz, ctz+n-ctz*k).times(a0.inv()).log().times(Elem(k)).exp().times(a0.pow(k)).clip(0, -1, ctz*k); } auto begin(){ return a.begin(); } auto end(){ return a.end(); } auto begin() const { return a.begin(); } auto end() const { return a.end(); } std::string toString(std::string beg = "[ ", std::string delim = " ", std::string en = " ]") const { std::string res = beg; bool f = false; for(auto x : a){ if(f){ res += delim; } f = true; res += std::to_string(x.val()); } res += en; return res; } std::vector<Elem> getVectorMoved(){ return std::move(a); } Fps& operator+=(const Fps& r){ capSize(std::max(size(), r.size())); for(int i=0; i<r.size(); i++) a[i] += r[i]; return *this; } Fps& operator-=(const Fps& r){ capSize(std::max(size(), r.size())); for(int i=0; i<r.size(); i++) a[i] -= r[i]; return *this; } Fps operator+(const Fps& r) const { return (clip(0, std::max(size(), r.size())) += r).move(); } Fps operator-(const Fps& r) const { return (clip(0, std::max(size(), r.size())) -= r).move(); } Fps operator-() const { return (clip().negate()).move(); } Fps operator*(const Fps& r) const { return convolve(r).removeLeadingZeros().move(); } Fps& operator*=(const Fps& r){ return (*this) = operator*(r); } Fps& operator*=(Elem m){ return times(m); } Fps operator*(Elem m) const { return (clip() *= m).move(); } Elem eval(Elem x) const { Elem res = 0; for(int i=size()-1; i>=0; i--) res = res * x + a[i]; return res; } }; template<class Elem, class NttInst> Comb<Elem> FpsNtt<Elem, NttInst>::comb; template<class Elem, class NttInst> const NttInst FpsNtt<Elem, NttInst>::nttInst; } // namespace nachia namespace nachia{ template<class Elem> class CsrArray{ public: struct ListRange{ using iterator = typename std::vector<Elem>::iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } Elem& operator[](int i) const { return begi[i]; } }; struct ConstListRange{ using iterator = typename std::vector<Elem>::const_iterator; iterator begi, endi; iterator begin() const { return begi; } iterator end() const { return endi; } int size() const { return (int)std::distance(begi, endi); } const Elem& operator[](int i) const { return begi[i]; } }; private: int m_n; std::vector<Elem> m_list; std::vector<int> m_pos; public: CsrArray() : m_n(0), m_list(), m_pos() {} static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){ CsrArray res; res.m_n = n; std::vector<int> buf(n+1, 0); for(auto& [u,v] : items){ ++buf[u]; } for(int i=1; i<=n; i++) buf[i] += buf[i-1]; res.m_list.resize(buf[n]); for(int i=(int)items.size()-1; i>=0; i--){ res.m_list[--buf[items[i].first]] = std::move(items[i].second); } res.m_pos = std::move(buf); return res; } static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){ CsrArray res; res.m_n = pos.size() - 1; res.m_list = std::move(list); res.m_pos = std::move(pos); return res; } ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; } int size() const { return m_n; } int fullSize() const { return (int)m_list.size(); } }; } // namespace nachia namespace nachia{ struct Graph { public: struct Edge{ int from, to; void reverse(){ std::swap(from, to); } }; using Base = std::vector<std::pair<int, int>>; Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {} Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){ m_e.resize(edges.size()); for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second }; } template<class Cin> static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){ Graph res(n, undirected, m); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; res[i].from = u - offset; res[i].to = v - offset; } return res; } int numVertices() const noexcept { return m_n; } int numEdges() const noexcept { return int(m_e.size()); } int addNode() noexcept { return m_n++; } int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; } Edge& operator[](int ei) noexcept { return m_e[ei]; } const Edge& operator[](int ei) const noexcept { return m_e[ei]; } Edge& at(int ei) { return m_e.at(ei); } const Edge& at(int ei) const { return m_e.at(ei); } auto begin(){ return m_e.begin(); } auto end(){ return m_e.end(); } auto begin() const { return m_e.begin(); } auto end() const { return m_e.end(); } bool isUndirected() const noexcept { return m_isUndir; } void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); } void contract(int newV, const std::vector<int>& mapping){ assert(numVertices() == int(mapping.size())); for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV); for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; } m_n = newV; } std::vector<Graph> induce(int num, const std::vector<int>& mapping) const { int n = numVertices(); assert(n == int(mapping.size())); for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num); std::vector<int> indexV(n), newV(num); for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++; std::vector<Graph> res; res.reserve(num); for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected()); for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]); return res; } CsrArray<int> getEdgeIndexArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(int i=0; i<numEdges(); i++){ auto e = operator[](i); src.emplace_back(e.from, i); if(undirected) src.emplace_back(e.to, i); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); } CsrArray<int> getAdjacencyArray(bool undirected) const { std::vector<std::pair<int, int>> src; src.reserve(numEdges() * (undirected ? 2 : 1)); for(auto e : m_e){ src.emplace_back(e.from, e.to); if(undirected) src.emplace_back(e.to, e.from); } return CsrArray<int>::Construct(numVertices(), src); } CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); } private: int m_n; std::vector<Edge> m_e; bool m_isUndir; }; } // namespace nachia #include <atcoder/convolution> using Fps = nachia::FpsNtt<Modint>; Modint KthTermOfRationalGF( Fps denom, Fps numer, long long K ){ assert(denom.size() != 0); assert(denom.size() == numer.size()); assert(denom[0].val() != 0); if(K < 0) return 0; int n = (int)denom.size(); while(K > 500000){ auto Qn = denom.clip(0,n+1); for(int i=1; i<n; i+=2) Qn[i] = -Qn[i]; int f = K % 2; denom = denom.convolve(Qn); for(int i=0; i<n; i++) denom[i] = denom[i*2]; denom.capSize(n); numer = numer.convolve(Qn); for(int i=0; i<n; i++) numer[i] = numer[i*2+f]; numer.capSize(n); K /= 2; } numer *= denom.inv(K+1); return numer[K]; } struct FracX { Fps p1, px, q1, qx; void negate(){ p1.negate(); px.negate(); q1.negate(); qx.negate(); } }; struct Frac { Fps p, q; void negate(){ p.negate(); q.negate(); } }; FracX operator+(const FracX& l, const Frac& r){ return { l.p1 * r.q + l.q1 * r.p, l.px * r.q + l.qx * r.p, l.q1 * r.q, l.qx * r.q }; } Frac operator+(const Frac& l, const Frac& r){ return { l.p * r.q + l.q * r.p, l.q * r.q }; } FracX substitute(const FracX& f, const FracX& x){ return { f.p1 * x.q1 + f.px * x.p1, f.p1 * x.qx + f.px * x.px, f.q1 * x.q1 + f.qx * x.p1, f.q1 * x.qx + f.qx * x.px, }; } #include <chrono> namespace nachia{ template<class Fps> class FpsNttSetupManager { using ElemTy = typename Fps::ElemTy; using MyType = FpsNttSetupManager; Fps raw; mutable Fps ntt; static const int THRESH = 30; FpsNttSetupManager(Fps _raw) : raw(_raw.move()) , ntt() {} public: FpsNttSetupManager() : FpsNttSetupManager(Fps()) {} FpsNttSetupManager(Fps _raw, Fps _ntt) : raw(_raw.move()) , ntt(_ntt.move()) {} const Fps& getRaw() const { return raw; } int size() const { return raw.size(); } int Least(){ return Fps::BestNttSize(raw.size()); } static MyType FromRaw(Fps _raw){ return FpsNttSetupManager(_raw.move()); } static MyType FromNtt(Fps _ntt){ Fps x = _ntt.clip(); return MyType(x.intt().removeLeadingZeros().move(), _ntt.move()); } void doubling() const { if(ntt.size() == 0) ntt = raw.clip(0, Fps::BestNttSize(raw.size())).ntt().move(); else ntt = ntt.nttDouble(raw.clip(0, ntt.size())); } Fps& ensureNtt(int sz) const { if(sz / 8 >= ntt.size()) ntt = raw.clip(0, sz).ntt().move(); while(ntt.size() < sz) doubling(); return ntt; } Fps nttClip(int sz) const { return ensureNtt(sz).clip(0,sz); } std::pair<Fps, Fps> destruct(){ return std::make_pair(raw.move(), ntt.move()); } MyType operator+(const MyType& r) const { Fps nntt; int z1 = std::min(ntt.size(), r.ntt.size()); if(z1 >= std::max(size(), r.size())){ nntt.capSize(std::min(ntt.size(), r.ntt.size())); for(int i=0; i<nntt.size(); i++) nntt[i] = ntt[i] + r.ntt[i]; } return FpsNttSetupManager(raw + r.raw, nntt.move()); } MyType operator*(const MyType& r) const { if(std::min(size(), r.size()) <= THRESH) return FromRaw(raw * r.raw); int sz = Fps::BestNttSize(size() + r.size() - 1); return FromNtt(nttClip(sz).mulEach(r.ensureNtt(sz)).move()); } }; } // namespace nachia namespace nachia{ template<class Fps> Fps ProductOfManyPolynomials(std::vector<Fps> poly){ using Modint = typename Fps::ElemTy; using Fps2 = FpsNttSetupManager<Fps>; if(poly.empty()) return std::vector<Modint>{Modint(1)}; for(auto& p : poly) p.removeLeadingZeros(); for(auto& p : poly) if(p.size() == 0) return Fps(); std::vector<Fps2> poly2; for(auto& p : poly) poly2.push_back(Fps2::FromRaw(p.move())); int OFF_K = 16; for(int K=OFF_K; poly2.size() != 1; K*=2){ size_t pos = poly2.size(); for(size_t i=0; i<poly2.size(); i++) if(poly2[i].size() <= K){ if(pos == poly2.size() || poly2[pos].size() + poly2[i].size() - 1 > K){ pos = i; continue; } poly2[pos] = poly2[pos] * poly2[i]; std::swap(poly2[i--], poly2.back()); poly2.pop_back(); } } return poly2[0].destruct().first.move(); } // sum_{a in F} a^k for 0 <= k <= maxIdx template<class Modint> std::vector<Modint> SumOfPower(std::vector<Modint> F, int maxIdx){ using Fps = nachia::FpsNtt<Modint>; std::vector<Fps> polys(F.size()); for(std::size_t i=0; i<F.size(); i++){ polys[i] = Fps(2).set(0,1).set(1,-F[i]).move(); } Fps a = nachia::ProductOfManyPolynomials<Fps>(polys).log(maxIdx+1); for(int i=0; i<=maxIdx; i++) a[i] *= -Modint::raw(i); a[0] = F.size(); return a.getVectorMoved(); } } // namespace nachia void testcase(){ //auto t0 = chrono::high_resolution_clock::now(); int N,M,S,T; cin >> N >> M >> S >> T; S--; T--; auto tree = nachia::Graph::Input(cin, N, true, N-1, 1); auto adj = tree.getAdjacencyArray(); vector<int> parent(N, -1); vector<int> bfs; bfs.push_back(S); vector<int> dsize(N, 1); rep(i,N){ int v = bfs[i]; for(int w : adj[v]) if(parent[v] != w){ bfs.push_back(w); parent[w] = v; } } repr(i,N){ int v = bfs[i]; if(i != 0) dsize[parent[v]] += dsize[v]; } adj = tree.getAdjacencyArray(false); FracX fBase; fBase.p1 = Fps(3).set(2,1).move(); fBase.q1 = Fps(2).set(0,1).set(1,-1).move(); fBase.qx = Fps(1).set(0,-1).move(); for(auto& e : tree) if(parent[e.to] != e.from) e.reverse(); adj = tree.getAdjacencyArray(false); auto findFrac = [&](auto& findFrac, int v) -> Frac { vector<FracX> buf; buf.push_back(fBase); int p = v; while(true){ if(adj[p].size() == 0) break; for(int e=1; e<adj[p].size(); e++){ if(dsize[adj[p][0]] < dsize[adj[p][e]]) swap(adj[p][0], adj[p][e]); } FracX f = fBase; vector<Frac> cs; for(int e=1; e<adj[p].size(); e++) cs.push_back(findFrac(findFrac, adj[p][e])); for(int d=1; d<(int)cs.size(); d*=2){ for(int c=0; c+d<(int)cs.size(); c+=d*2){ cs[c] = cs[c] + cs[c+d]; } } if(!cs.empty()) f = f + cs[0]; buf.push_back(move(f)); p = adj[p][0]; } for(int d=1; d<(int)buf.size(); d*=2){ for(int c=0; c+d<(int)buf.size(); c+=d*2){ buf[c] = substitute(buf[c], buf[c+d]); } } return Frac{ buf[0].p1.move(), buf[0].q1.move() }; }; //auto t1 = chrono::high_resolution_clock::now(); //cout << "t1 = " << (t1 - t0).count() << endl; vector<Frac> path; { int q = T; for(int p=T; p>=0; p=parent[p]){ vector<Frac> cs; cs.push_back({ Fps(0), Fps(1).set(0,1) }); for(int w : adj[p]) if(w != q){ cs.push_back(findFrac(findFrac, w)); } for(int d=1; d<(int)cs.size(); d*=2){ for(int c=0; c+d<(int)cs.size(); c+=d*2){ cs[c] = cs[c] + cs[c+d]; } } q = p; cs[0].p = cs[0].p + cs[0].q.clip(-1); path.push_back(move(cs[0])); } } vector<int> pathsize(path.size()); rep(i,path.size()) pathsize[i] = max(path[i].p.size(), path[i].q.size()); //auto t2 = chrono::high_resolution_clock::now(); //cout << "t2 = " << (t2 - t0).count() << endl; auto ansf = Frac{ Fps(1).set(0,1), Fps(1).set(0,1) }; vector<FracX> pathBase; for(auto& p : path){ FracX buf; buf.p1 = p.q.clip(-2); buf.q1 = p.q - p.p; buf.qx = -p.q; pathBase.push_back(move(buf)); } auto throughOnePath = [&](vector<FracX> buf) -> Frac { for(int d=1; d<(int)buf.size(); d*=2){ for(int c=0; c+d<(int)buf.size(); c+=d*2){ buf[c] = substitute(buf[c], buf[c+d]); } } return Frac{ buf[0].p1.move(), buf[0].q1.move() }; }; vector<Fps> plist, qlist; /* auto throughPath = [&](auto& throughPath, int l, int r, int n){ if(l == r) return; if(l + 1 == r){ plist.push_back(path[l].q); qlist.push_back(path[l].q - path[l].p); return; } int m = (l + r) / 2; throughPath(throughPath, l, m, n); throughPath(throughPath, m+1, r, n); auto res = path[m]; if(m+1 < r) res = res + throughOnePath(vector(pathBase.begin() + (m+1), pathBase.begin() + r)); if(l < m) res = res + throughOnePath(vector(pathBase.rend() - m, pathBase.rend() - l)); res.p = res.q - res.p; swap(res.p, res.q); plist.push_back(res.p.move()); qlist.push_back(res.q.move()); }; */ FracX identFracX; identFracX.px = identFracX.q1 = Fps(1).set(0,1); auto throughPath = [&](auto& throughPath, int l, int r, int n) -> pair<FracX, FracX> { if(l == r) return { identFracX, identFracX }; if(l + 1 == r){ plist.push_back(path[l].q); qlist.push_back(path[l].q - path[l].p); return { pathBase[l], pathBase[l] }; } int m = (l + r) / 2; auto [ltom, mtol] = throughPath(throughPath, l, m, n); auto [mtor, rtom] = throughPath(throughPath, m+1, r, n); auto res = path[m]; if(l < m) res = res + Frac{ mtol.p1, mtol.q1 }; if(m+1 < r) res = res + Frac{ mtor.p1, mtor.q1 }; res.p = res.q - res.p; swap(res.p, res.q); plist.push_back(res.p.move()); qlist.push_back(res.q.move()); return { substitute(ltom, substitute(pathBase[m], mtor)), substitute(rtom, substitute(pathBase[m], mtol)) }; }; throughPath(throughPath, 0, path.size(), path.size()); //auto t3 = chrono::high_resolution_clock::now(); //cout << "t3 = " << (t3 - t0).count() << endl; ansf.p = nachia::ProductOfManyPolynomials(move(plist)); ansf.q = nachia::ProductOfManyPolynomials(move(qlist)); //auto t4 = chrono::high_resolution_clock::now(); //cout << "t4 = " << (t4 - t0).count() << endl; int sz = max(ansf.p.size(), ansf.q.size()); Modint ans = KthTermOfRationalGF(ansf.q.clip(0,sz), ansf.p.clip(0,sz), M-(int)path.size()+1); cout << ans.val() << endl; //auto t5 = chrono::high_resolution_clock::now(); //cout << "t5 = " << (t5 - t0).count() << endl; } int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); #ifdef NACHIA int T; cin >> T; for(int t=0; t<T; T!=++t?(cout<<'\n'),0:0) #endif testcase(); return 0; }