結果

問題 No.2588 Increasing Record
ユーザー hitonanodehitonanode
提出日時 2023-12-16 22:40:34
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 24,089 bytes
コンパイル時間 2,912 ms
コンパイル使用メモリ 215,728 KB
実行使用メモリ 39,668 KB
最終ジャッジ日時 2024-09-27 07:49:50
合計ジャッジ時間 12,868 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 WA -
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 56 ms
6,144 KB
testcase_13 AC 56 ms
6,144 KB
testcase_14 AC 59 ms
5,632 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 AC 347 ms
35,824 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 AC 168 ms
20,352 KB
testcase_31 AC 211 ms
28,032 KB
testcase_32 AC 239 ms
34,560 KB
testcase_33 AC 233 ms
36,132 KB
testcase_34 AC 233 ms
36,352 KB
testcase_35 AC 235 ms
36,224 KB
testcase_36 AC 237 ms
36,352 KB
testcase_37 AC 352 ms
35,832 KB
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 AC 230 ms
39,668 KB
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <cassert>
#include <iostream>
#include <set>
#include <vector>

template <int md> struct ModInt {
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }
    constexpr ModInt fac() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[this->val_];
    }
    constexpr ModInt facinv() const {
        while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[this->val_];
    }
    constexpr ModInt doublefac() const {
        lint k = (this->val_ + 1) / 2;
        return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac())
                                : ModInt(k).fac() * ModInt(2).pow(k);
    }

    constexpr ModInt nCr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv() * ModInt(r).facinv();
    }

    constexpr ModInt nPr(int r) const {
        if (r < 0 or this->val_ < r) return ModInt(0);
        return this->fac() * (*this - r).facinv();
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r);

        r = std::min(r, n - r);

        ModInt ret = ModInt(r).facinv();
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt(k).facinv(), sum += k;
        }
        return ret * ModInt(sum).fac();
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1)
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv();
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using mint = ModInt<998244353>;

// UnionFind Tree (0-indexed), based on size of each disjoint set
struct UnionFind {
    std::vector<int> par, cou;
    UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); }
    int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); }
    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return false;
        // if (cou[x] < cou[y]) std::swap(x, y);
        par[y] = x, cou[x] += cou[y];
        return true;
    }
    int count(int x) { return cou[find(x)]; }
    bool same(int x, int y) { return find(x) == find(y); }
    std::vector<std::vector<int>> groups() {
        std::vector<std::vector<int>> ret(par.size());
        for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i);
        ret.erase(std::remove_if(ret.begin(), ret.end(),
                                 [&](const std::vector<int> &v) { return v.empty(); }),
                  ret.end());
        return ret;
    }
};

#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <stack>
#include <utility>
#include <vector>

// Heavy-Light Decomposition of trees
// Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950
struct HeavyLightDecomposition {
    int V;
    int k;
    int nb_heavy_path;
    std::vector<std::vector<int>> e;
    std::vector<int> par;         // par[i] = parent of vertex i (Default: -1)
    std::vector<int> depth;       // depth[i] = distance between root and vertex i
    std::vector<int> subtree_sz;  // subtree_sz[i] = size of subtree whose root is i
    std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1)
    std::vector<int> tree_id;     // tree_id[i] = id of tree vertex i belongs to
    std::vector<int> aligned_id,
        aligned_id_inv;    // aligned_id[i] =  aligned id for vertex i (consecutive on heavy edges)
    std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root
    std::vector<int> head_ids;      // consist of head vertex id's
    std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i]

    HeavyLightDecomposition(int sz = 0)
        : V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz),
          tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {}
    void add_edge(int u, int v) {
        e[u].emplace_back(v);
        e[v].emplace_back(u);
    }

    void _build_dfs(int root) {
        std::stack<std::pair<int, int>> st;
        par[root] = -1;
        depth[root] = 0;
        st.emplace(root, 0);
        while (!st.empty()) {
            int now = st.top().first;
            int &i = st.top().second;
            if (i < (int)e[now].size()) {
                int nxt = e[now][i++];
                if (nxt == par[now]) continue;
                par[nxt] = now;
                depth[nxt] = depth[now] + 1;
                st.emplace(nxt, 0);
            } else {
                st.pop();
                int max_sub_sz = 0;
                subtree_sz[now] = 1;
                heavy_child[now] = -1;
                for (auto nxt : e[now]) {
                    if (nxt == par[now]) continue;
                    subtree_sz[now] += subtree_sz[nxt];
                    if (max_sub_sz < subtree_sz[nxt])
                        max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt;
                }
            }
        }
    }

    void _build_bfs(int root, int tree_id_now) {
        std::queue<int> q({root});
        while (!q.empty()) {
            int h = q.front();
            q.pop();
            head_ids.emplace_back(h);
            for (int now = h; now != -1; now = heavy_child[now]) {
                tree_id[now] = tree_id_now;
                aligned_id[now] = k++;
                aligned_id_inv[aligned_id[now]] = now;
                heavy_path_id[now] = nb_heavy_path;
                head[now] = h;
                for (int nxt : e[now])
                    if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt);
            }
            nb_heavy_path++;
        }
    }

    void build(std::vector<int> roots = {0}) {
        int tree_id_now = 0;
        for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++);
    }

    template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const {
        assert(int(data.size()) == V);
        std::vector<T> ret;
        ret.reserve(V);
        for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]);
        return ret;
    }

    // query for vertices on path [u, v] (INCLUSIVE)
    void
    for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const {
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]);
            if (head[u] == head[v]) break;
            v = par[head[v]];
        }
    }

    void for_each_vertex_noncommutative(
        int from, int to, const std::function<void(int ancestor, int descendant)> &fup,
        const std::function<void(int ancestor, int descendant)> &fdown) const {
        int u = from, v = to;
        const int lca = lowest_common_ancestor(u, v), dlca = depth[lca];
        while (u >= 0 and depth[u] > dlca) {
            const int p = (depth[head[u]] > dlca ? head[u] : lca);
            fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p];
        }
        static std::vector<std::pair<int, int>> lrs;
        int sz = 0;
        while (v >= 0 and depth[v] >= dlca) {
            const int p = (depth[head[v]] >= dlca ? head[v] : lca);
            if (int(lrs.size()) == sz) lrs.emplace_back(0, 0);
            lrs.at(sz++) = {p, v}, v = par.at(p);
        }
        while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]);
    }

    // query for edges on path [u, v]
    void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const {
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            if (head[u] != head[v]) {
                f(aligned_id[head[v]], aligned_id[v]);
                v = par[head[v]];
            } else {
                if (u != v) f(aligned_id[u] + 1, aligned_id[v]);
                break;
            }
        }
    }

    // lowest_common_ancestor: O(log V)
    int lowest_common_ancestor(int u, int v) const {
        assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
        while (true) {
            if (aligned_id[u] > aligned_id[v]) std::swap(u, v);
            if (head[u] == head[v]) return u;
            v = par[head[v]];
        }
    }

    int distance(int u, int v) const {
        assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0);
        return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)];
    }

    // Level ancestor, O(log V)
    // if k-th parent is out of range, return -1
    int kth_parent(int v, int k) const {
        if (k < 0) return -1;
        while (v >= 0) {
            int h = head.at(v), len = depth.at(v) - depth.at(h);
            if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k);
            k -= len + 1, v = par.at(h);
        }
        return -1;
    }

    // Jump on tree, O(log V)
    int s_to_t_by_k_steps(int s, int t, int k) const {
        if (k < 0) return -1;
        if (k == 0) return s;
        int lca = lowest_common_ancestor(s, t);
        if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k);
        return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k);
    }
};

// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
    int n;
    std::vector<T> data;
    BIT(int len = 0) : n(len), data(len) {}
    void reset() { std::fill(data.begin(), data.end(), T(0)); }
    void add(int pos, T v) { // a[pos] += v
        pos++;
        while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
    }
    T sum(int k) const { // a[0] + ... + a[k - 1]
        T res = 0;
        while (k > 0) res += data[k - 1], k -= k & -k;
        return res;
    }

    T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]

    template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
        T prv = 0;
        os << '[';
        for (int i = 1; i <= bit.n; i++) {
            T now = bit.sum(i);
            os << now - prv << ',', prv = now;
        }
        return os << ']';
    }
};


int main() {
    int N, M;
    cin >> N >> M;

    vector<vector<int>> to(N);
    REP(e, M) {
        int a, b;
        cin >> a >> b;
        --a, --b;
        to.at(a).push_back(b);
        to.at(b).push_back(a);
    }

    vector<mint> dp(N);

    UnionFind uf(N);

    // vector<pint> edges;
    // vector<unordered_set<int>> can_go_nexts(N);
    HeavyLightDecomposition hld(N);
    REP(i, N) {
        for (int j : to.at(i)) {
            if (j >= i) continue;
            if (uf.same(i, j)) continue;
            // edges.emplace_back(uf.find(i), uf.find(j));
            assert(i == uf.find(i));
            hld.add_edge(uf.find(i), uf.find(j));
            uf.unite(i, j);
        }
    }
    hld.build({N - 1});
    // dbg(edges);
    BIT<mint> bit(N);

    // mint ret = 0;

    REP(i, N) {
        vector<int> cs;
        for (int j : to.at(i)) if (j < i) cs.push_back(j);
        sort(cs.begin(), cs.end(), [&](int a, int b) { return hld.aligned_id.at(a) < hld.aligned_id.at(b); });
        dbg(cs);

        mint w = 1;
        if (cs.size()) {
            hld.for_each_vertex(i, cs.front(), [&](int a, int b) { w += bit.sum(a, b + 1); });
            dbg(w);
            int v = cs.front();
            for (int x : cs) {
                const int lca = hld.lowest_common_ancestor(v, x);
                int dist = hld.distance(lca, x);
                // assert(dist > 0);
                if (dist > 0) {
                    int u = hld.kth_parent(x, dist - 1);
                    hld.for_each_vertex(x, u, [&](int a, int b) { w += bit.sum(a, b + 1); });
                    dbg(make_tuple(x, u, w));
                }
                v = x;
            }
        }
        dbg(make_tuple(i, w));
        bit.add(hld.aligned_id.at(i), w);
    }

    cout << bit.sum(0, N) << '\n';
}
0