結果
問題 | No.2588 Increasing Record |
ユーザー | hitonanode |
提出日時 | 2023-12-16 22:40:34 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 24,089 bytes |
コンパイル時間 | 2,912 ms |
コンパイル使用メモリ | 215,728 KB |
実行使用メモリ | 39,668 KB |
最終ジャッジ日時 | 2024-09-27 07:49:50 |
合計ジャッジ時間 | 12,868 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 56 ms
6,144 KB |
testcase_13 | AC | 56 ms
6,144 KB |
testcase_14 | AC | 59 ms
5,632 KB |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 347 ms
35,824 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 168 ms
20,352 KB |
testcase_31 | AC | 211 ms
28,032 KB |
testcase_32 | AC | 239 ms
34,560 KB |
testcase_33 | AC | 233 ms
36,132 KB |
testcase_34 | AC | 233 ms
36,352 KB |
testcase_35 | AC | 235 ms
36,224 KB |
testcase_36 | AC | 237 ms
36,352 KB |
testcase_37 | AC | 352 ms
35,832 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | AC | 230 ms
39,668 KB |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <cassert> #include <iostream> #include <set> #include <vector> template <int md> struct ModInt { using lint = long long; constexpr static int mod() { return md; } static int get_primitive_root() { static int primitive_root = 0; if (!primitive_root) { primitive_root = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModInt(g).pow((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root; } int val_; int val() const noexcept { return val_; } constexpr ModInt() : val_(0) {} constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; } constexpr ModInt(lint v) { _setval(v % md + md); } constexpr explicit operator bool() const { return val_ != 0; } constexpr ModInt operator+(const ModInt &x) const { return ModInt()._setval((lint)val_ + x.val_); } constexpr ModInt operator-(const ModInt &x) const { return ModInt()._setval((lint)val_ - x.val_ + md); } constexpr ModInt operator*(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.val_ % md); } constexpr ModInt operator/(const ModInt &x) const { return ModInt()._setval((lint)val_ * x.inv().val() % md); } constexpr ModInt operator-() const { return ModInt()._setval(md - val_); } constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; } constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; } constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; } constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; } friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; } friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; } friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; } friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; } constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; } constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; } constexpr bool operator<(const ModInt &x) const { return val_ < x.val_; } // To use std::map<ModInt, T> friend std::istream &operator>>(std::istream &is, ModInt &x) { lint t; return is >> t, x = ModInt(t), is; } constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) { return os << x.val_; } constexpr ModInt pow(lint n) const { ModInt ans = 1, tmp = *this; while (n) { if (n & 1) ans *= tmp; tmp *= tmp, n >>= 1; } return ans; } static constexpr int cache_limit = std::min(md, 1 << 21); static std::vector<ModInt> facs, facinvs, invs; constexpr static void _precalculation(int N) { const int l0 = facs.size(); if (N > md) N = md; if (N <= l0) return; facs.resize(N), facinvs.resize(N), invs.resize(N); for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i; facinvs[N - 1] = facs.back().pow(md - 2); for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1); for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1]; } constexpr ModInt inv() const { if (this->val_ < cache_limit) { if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0}; while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return invs[this->val_]; } else { return this->pow(md - 2); } } constexpr ModInt fac() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facs[this->val_]; } constexpr ModInt facinv() const { while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2); return facinvs[this->val_]; } constexpr ModInt doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModInt(k * 2).fac() / (ModInt(2).pow(k) * ModInt(k).fac()) : ModInt(k).fac() * ModInt(2).pow(k); } constexpr ModInt nCr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv() * ModInt(r).facinv(); } constexpr ModInt nPr(int r) const { if (r < 0 or this->val_ < r) return ModInt(0); return this->fac() * (*this - r).facinv(); } static ModInt binom(int n, int r) { static long long bruteforce_times = 0; if (r < 0 or n < r) return ModInt(0); if (n <= bruteforce_times or n < (int)facs.size()) return ModInt(n).nCr(r); r = std::min(r, n - r); ModInt ret = ModInt(r).facinv(); for (int i = 0; i < r; ++i) ret *= n - i; bruteforce_times += r; return ret; } // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!) // Complexity: O(sum(ks)) template <class Vec> static ModInt multinomial(const Vec &ks) { ModInt ret{1}; int sum = 0; for (int k : ks) { assert(k >= 0); ret *= ModInt(k).facinv(), sum += k; } return ret * ModInt(sum).fac(); } // Catalan number, C_n = binom(2n, n) / (n + 1) // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ... // https://oeis.org/A000108 // Complexity: O(n) static ModInt catalan(int n) { if (n < 0) return ModInt(0); return ModInt(n * 2).fac() * ModInt(n + 1).facinv() * ModInt(n).facinv(); } ModInt sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (pow((md - 1) / 2) != 1) return 0; ModInt b = 1; while (b.pow((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModInt x = pow((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModInt z = b.pow(m); while (y != 1) { int j = 0; ModInt t = y; while (t != 1) j++, t *= t; z = z.pow(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModInt(std::min(x.val_, md - x.val_)); } }; template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1}; template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0}; using mint = ModInt<998244353>; // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; // if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } std::vector<std::vector<int>> groups() { std::vector<std::vector<int>> ret(par.size()); for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i); ret.erase(std::remove_if(ret.begin(), ret.end(), [&](const std::vector<int> &v) { return v.empty(); }), ret.end()); return ret; } }; #include <algorithm> #include <cassert> #include <functional> #include <queue> #include <stack> #include <utility> #include <vector> // Heavy-Light Decomposition of trees // Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950 struct HeavyLightDecomposition { int V; int k; int nb_heavy_path; std::vector<std::vector<int>> e; std::vector<int> par; // par[i] = parent of vertex i (Default: -1) std::vector<int> depth; // depth[i] = distance between root and vertex i std::vector<int> subtree_sz; // subtree_sz[i] = size of subtree whose root is i std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1) std::vector<int> tree_id; // tree_id[i] = id of tree vertex i belongs to std::vector<int> aligned_id, aligned_id_inv; // aligned_id[i] = aligned id for vertex i (consecutive on heavy edges) std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root std::vector<int> head_ids; // consist of head vertex id's std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i] HeavyLightDecomposition(int sz = 0) : V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz), tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {} void add_edge(int u, int v) { e[u].emplace_back(v); e[v].emplace_back(u); } void _build_dfs(int root) { std::stack<std::pair<int, int>> st; par[root] = -1; depth[root] = 0; st.emplace(root, 0); while (!st.empty()) { int now = st.top().first; int &i = st.top().second; if (i < (int)e[now].size()) { int nxt = e[now][i++]; if (nxt == par[now]) continue; par[nxt] = now; depth[nxt] = depth[now] + 1; st.emplace(nxt, 0); } else { st.pop(); int max_sub_sz = 0; subtree_sz[now] = 1; heavy_child[now] = -1; for (auto nxt : e[now]) { if (nxt == par[now]) continue; subtree_sz[now] += subtree_sz[nxt]; if (max_sub_sz < subtree_sz[nxt]) max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt; } } } } void _build_bfs(int root, int tree_id_now) { std::queue<int> q({root}); while (!q.empty()) { int h = q.front(); q.pop(); head_ids.emplace_back(h); for (int now = h; now != -1; now = heavy_child[now]) { tree_id[now] = tree_id_now; aligned_id[now] = k++; aligned_id_inv[aligned_id[now]] = now; heavy_path_id[now] = nb_heavy_path; head[now] = h; for (int nxt : e[now]) if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt); } nb_heavy_path++; } } void build(std::vector<int> roots = {0}) { int tree_id_now = 0; for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++); } template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const { assert(int(data.size()) == V); std::vector<T> ret; ret.reserve(V); for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]); return ret; } // query for vertices on path [u, v] (INCLUSIVE) void for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const { while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]); if (head[u] == head[v]) break; v = par[head[v]]; } } void for_each_vertex_noncommutative( int from, int to, const std::function<void(int ancestor, int descendant)> &fup, const std::function<void(int ancestor, int descendant)> &fdown) const { int u = from, v = to; const int lca = lowest_common_ancestor(u, v), dlca = depth[lca]; while (u >= 0 and depth[u] > dlca) { const int p = (depth[head[u]] > dlca ? head[u] : lca); fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p]; } static std::vector<std::pair<int, int>> lrs; int sz = 0; while (v >= 0 and depth[v] >= dlca) { const int p = (depth[head[v]] >= dlca ? head[v] : lca); if (int(lrs.size()) == sz) lrs.emplace_back(0, 0); lrs.at(sz++) = {p, v}, v = par.at(p); } while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]); } // query for edges on path [u, v] void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const { while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); if (head[u] != head[v]) { f(aligned_id[head[v]], aligned_id[v]); v = par[head[v]]; } else { if (u != v) f(aligned_id[u] + 1, aligned_id[v]); break; } } } // lowest_common_ancestor: O(log V) int lowest_common_ancestor(int u, int v) const { assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0); while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); if (head[u] == head[v]) return u; v = par[head[v]]; } } int distance(int u, int v) const { assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0); return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)]; } // Level ancestor, O(log V) // if k-th parent is out of range, return -1 int kth_parent(int v, int k) const { if (k < 0) return -1; while (v >= 0) { int h = head.at(v), len = depth.at(v) - depth.at(h); if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k); k -= len + 1, v = par.at(h); } return -1; } // Jump on tree, O(log V) int s_to_t_by_k_steps(int s, int t, int k) const { if (k < 0) return -1; if (k == 0) return s; int lca = lowest_common_ancestor(s, t); if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k); return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k); } }; // 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len)) template <class T> struct BIT { int n; std::vector<T> data; BIT(int len = 0) : n(len), data(len) {} void reset() { std::fill(data.begin(), data.end(), T(0)); } void add(int pos, T v) { // a[pos] += v pos++; while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos; } T sum(int k) const { // a[0] + ... + a[k - 1] T res = 0; while (k > 0) res += data[k - 1], k -= k & -k; return res; } T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1] template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) { T prv = 0; os << '['; for (int i = 1; i <= bit.n; i++) { T now = bit.sum(i); os << now - prv << ',', prv = now; } return os << ']'; } }; int main() { int N, M; cin >> N >> M; vector<vector<int>> to(N); REP(e, M) { int a, b; cin >> a >> b; --a, --b; to.at(a).push_back(b); to.at(b).push_back(a); } vector<mint> dp(N); UnionFind uf(N); // vector<pint> edges; // vector<unordered_set<int>> can_go_nexts(N); HeavyLightDecomposition hld(N); REP(i, N) { for (int j : to.at(i)) { if (j >= i) continue; if (uf.same(i, j)) continue; // edges.emplace_back(uf.find(i), uf.find(j)); assert(i == uf.find(i)); hld.add_edge(uf.find(i), uf.find(j)); uf.unite(i, j); } } hld.build({N - 1}); // dbg(edges); BIT<mint> bit(N); // mint ret = 0; REP(i, N) { vector<int> cs; for (int j : to.at(i)) if (j < i) cs.push_back(j); sort(cs.begin(), cs.end(), [&](int a, int b) { return hld.aligned_id.at(a) < hld.aligned_id.at(b); }); dbg(cs); mint w = 1; if (cs.size()) { hld.for_each_vertex(i, cs.front(), [&](int a, int b) { w += bit.sum(a, b + 1); }); dbg(w); int v = cs.front(); for (int x : cs) { const int lca = hld.lowest_common_ancestor(v, x); int dist = hld.distance(lca, x); // assert(dist > 0); if (dist > 0) { int u = hld.kth_parent(x, dist - 1); hld.for_each_vertex(x, u, [&](int a, int b) { w += bit.sum(a, b + 1); }); dbg(make_tuple(x, u, w)); } v = x; } } dbg(make_tuple(i, w)); bit.add(hld.aligned_id.at(i), w); } cout << bit.sum(0, N) << '\n'; }