結果

問題 No.2489 X and Xor 2
ユーザー koba-e964koba-e964
提出日時 2023-12-19 02:29:35
言語 Rust
(1.77.0 + proconio)
結果
WA  
実行時間 -
コード長 7,546 bytes
コンパイル時間 14,109 ms
コンパイル使用メモリ 382,532 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-27 08:35:59
合計ジャッジ時間 14,819 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused variable: `n`
   --> src/main.rs:181:9
    |
181 |     let n: i64 = get();
    |         ^ help: if this is intentional, prefix it with an underscore: `_n`
    |
    = note: `#[warn(unused_variables)]` on by default

warning: unused variable: `i`
   --> src/main.rs:203:13
    |
203 |         for i in 0..k {
    |             ^ help: if this is intentional, prefix it with an underscore: `_i`

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;

fn get_word() -> String {
    let stdin = std::io::stdin();
    let mut stdin=stdin.lock();
    let mut u8b: [u8; 1] = [0];
    loop {
        let mut buf: Vec<u8> = Vec::with_capacity(16);
        loop {
            let res = stdin.read(&mut u8b);
            if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
                break;
            } else {
                buf.push(u8b[0]);
            }
        }
        if buf.len() >= 1 {
            let ret = String::from_utf8(buf).unwrap();
            return ret;
        }
    }
}

fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }

/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
    use std::ops::*;
    pub trait Mod: Copy { fn m() -> i64; }
    #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
    pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
    impl<M: Mod> ModInt<M> {
        // x >= 0
        pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
        fn new_internal(x: i64) -> Self {
            ModInt { x: x, phantom: ::std::marker::PhantomData }
        }
        pub fn pow(self, mut e: i64) -> Self {
            debug_assert!(e >= 0);
            let mut sum = ModInt::new_internal(1);
            let mut cur = self;
            while e > 0 {
                if e % 2 != 0 { sum *= cur; }
                cur *= cur;
                e /= 2;
            }
            sum
        }
        #[allow(dead_code)]
        pub fn inv(self) -> Self { self.pow(M::m() - 2) }
    }
    impl<M: Mod> Default for ModInt<M> {
        fn default() -> Self { Self::new_internal(0) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
        type Output = Self;
        fn add(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x + other.x;
            if sum >= M::m() { sum -= M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
        type Output = Self;
        fn sub(self, other: T) -> Self {
            let other = other.into();
            let mut sum = self.x - other.x;
            if sum < 0 { sum += M::m(); }
            ModInt::new_internal(sum)
        }
    }
    impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
        type Output = Self;
        fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
    }
    impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
        fn add_assign(&mut self, other: T) { *self = *self + other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
        fn sub_assign(&mut self, other: T) { *self = *self - other; }
    }
    impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
        fn mul_assign(&mut self, other: T) { *self = *self * other; }
    }
    impl<M: Mod> Neg for ModInt<M> {
        type Output = Self;
        fn neg(self) -> Self { ModInt::new(0) - self }
    }
    impl<M> ::std::fmt::Display for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            self.x.fmt(f)
        }
    }
    impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
        fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
            let (mut a, mut b, _) = red(self.x, M::m());
            if b < 0 {
                a = -a;
                b = -b;
            }
            write!(f, "{}/{}", a, b)
        }
    }
    impl<M: Mod> From<i64> for ModInt<M> {
        fn from(x: i64) -> Self { Self::new(x) }
    }
    // Finds the simplest fraction x/y congruent to r mod p.
    // The return value (x, y, z) satisfies x = y * r + z * p.
    fn red(r: i64, p: i64) -> (i64, i64, i64) {
        if r.abs() <= 10000 {
            return (r, 1, 0);
        }
        let mut nxt_r = p % r;
        let mut q = p / r;
        if 2 * nxt_r >= r {
            nxt_r -= r;
            q += 1;
        }
        if 2 * nxt_r <= -r {
            nxt_r += r;
            q -= 1;
        }
        let (x, z, y) = red(nxt_r, r);
        (x, y - q * z, z)
    }
} // mod mod_int

macro_rules! define_mod {
    ($struct_name: ident, $modulo: expr) => {
        #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
        pub struct $struct_name {}
        impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
    }
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;

// #{x | x < m, (x as bitstring)[p] = 1}
fn count_pop_bits(m: i64, p: usize) -> i64 {
    let lead = m & ((-1) << (p + 1));
    let rest = m - (lead << (p + 1));
    (lead >> 1) + if rest >= 1 << p { rest - (1 << p) } else { 0 }
}

fn e(m: i64, p: usize) -> MInt {
    let lead = m & ((-1) << (p + 1));
    let rest = m - (lead << (p + 1));
    let p2 = MInt::new(1 << p);
    let inv2 = MInt::new(2).inv();
    let count = MInt::new(lead >> (p + 1));
    let mut tot = p2 * (p2 * 3 - 1) * inv2 * count;
    tot += count * (count - 1) * inv2 * MInt::new(1 << (p + 1));
    if rest >= 1 << p {
        tot += MInt::new(lead + (1 << p)) * (rest - (1 << p));
        let tmp = MInt::new(rest - (1 << p));
        tot += tmp * (tmp - 1) * inv2;
    }
    tot
}

// dp[i][j] := i 番目まで埋めて A_i= j のときの積の総和 とすると、dp[i] |-> dp[i+1] は線型変換。
// これを行列累乗する必要があるが、そのままだと次元が M であり大きすぎるのである程度まとめる必要がある。
// u_j = dp[i][j], v_j = dp[i+1][j] として、u から v を作る線型変換のより小さい不変部分空間を作る。
// v_j = \sum_k u_k (k xor j) である。
// a := (u_j の和), s_i := {i 番目ビットが立っているもの限定の u_j の和},
// b := (v_j の和), t_i := {i 番目ビットが立っているもの限定の v_j の和} とする。
// a, s_i から b, t_i が計算できるのがポイント。そのためには以下の補題を使う。
// 補題: k = 2^a + 2^b + ... とする。このとき (k xor j) - j = ((2^a xor j) - j) + ((2^b xor j) - j) + ...
// この補題を使うと、まず b = (M(M-1)/2) a + \sum c(2^i) s_i が言える。(c(x) := \sum_{j<M} ((x xor j) - j))
// 同様に t_j := \sum_{k<M, k の j ビット目は立っている} ka + \sum_i d(2^i) s_i
// (d_j(x) := \sum_{k<M, k の j ビット目は立っている} ((x xor k) - k)) が言える。
// (証明の方針: b - (M(M-1)/2) a = \sum_{j,k} u_k ((k xor j) - j) = \sum c(2^i) \sum_{k<n, k の i ビット目は立っている} u_k = \sum c(2^i) s_i)
// c(2^i), d_j(2^i), e_j := \sum_{k<M, k の j ビット目は立っている} k は高速に計算できる。
fn main() {
    let n: i64 = get();
    let m: i64 = get();
    let mut k = 0;
    while (1 << k) < m {
        k += 1;
    }
    let mut init = vec![MInt::new(0); k + 1];
    init[0] += m;
    for i in 0..k {
        init[i + 1] += count_pop_bits(m, i);
    }
    let mut pred = vec![MInt::new(0); k + 1];
    pred[0] += 1;
    let mut mat = vec![vec![MInt::new(0); k + 1]; k + 1];
    let mm = m % MOD;
    mat[0][0] += mm * (mm - 1) / 2;
    for i in 0..k {
        let tmp = MInt::new(m) - count_pop_bits(m, i) * 2;
        mat[i + 1][0] += tmp * MInt::new(2).pow(i as i64);
    }
    for j in 0..k {
        mat[0][j + 1] = e(m, j);
        for i in 0..k {

        }
    }
    eprintln!("mat = {:?}", mat);
}
0