結果
問題 | No.2489 X and Xor 2 |
ユーザー |
|
提出日時 | 2023-12-19 11:29:14 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 23 ms / 2,000 ms |
コード長 | 12,373 bytes |
コンパイル時間 | 11,603 ms |
コンパイル使用メモリ | 386,208 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-27 08:48:00 |
合計ジャッジ時間 | 13,398 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 34 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;fn convolution(a: &[MInt], b: &[MInt]) -> Vec<MInt> {if a.is_empty() || b.is_empty() {return vec![];}let n = a.len() - 1;let m = b.len() - 1;let mut ans = vec![MInt::new(0); n + m + 1];for i in 0..n + 1 {for j in 0..m + 1 {ans[i + j] += a[i] * b[j];}}ans}// Finds [x^n] p(x)/q(x)// Ref: https://qiita.com/ryuhe1/items/da5acbcce4ac1911f47a// Verified by: https://atcoder.jp/contests/tdpc/submissions/24583334// Depends on: MInt.rsfn bostan_mori(p: &[MInt], q: &[MInt], mut n: i64) -> MInt {if p.is_empty() {return 0.into();}assert!(p.len() < q.len());let mut p = p.to_vec();let mut q = q.to_vec();while n > 0 {let mut qn = q.clone();for i in 0..qn.len() {if i % 2 == 1 {qn[i] = -qn[i];}}let num = convolution(&p, &qn);let den = convolution(&q, &qn);let mut nxt_p = vec![MInt::new(0); q.len() - 1];let mut nxt_q = vec![MInt::new(0); q.len()];for i in 0..q.len() - 1 {let to = 2 * i + (n % 2) as usize;if to < num.len() {nxt_p[i] = num[to];}}for i in 0..q.len() {nxt_q[i] = den[2 * i];}p = nxt_p;q = nxt_q;n /= 2;}p[0] * q[0].inv()}// Verified by: yukicoder No.1112// https://yukicoder.me/submissions/510746// https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm// Complexity: O(n^2)// Depends on MInt.rsfn berlekamp_massey<P: mod_int::Mod + PartialEq>(n: usize,s: &[mod_int::ModInt<P>],) -> Vec<mod_int::ModInt<P>>{type ModInt<P> = mod_int::ModInt<P>;let mut b = ModInt::new(1);let mut cp = vec![ModInt::new(0); n + 1];let mut bp = vec![mod_int::ModInt::new(0); n];cp[0] = mod_int::ModInt::new(1);bp[0] = mod_int::ModInt::new(1);let mut m = 1;let mut l = 0;for i in 0..2 * n + 1 {assert!(i >= l);assert!(l <= n);if i == 2 * n { break; }let mut d = s[i];for j in 1..l + 1 {d += cp[j] * s[i - j];}if d == ModInt::new(0) {m += 1;continue;}if 2 * l > i {// cp -= d/b * x^m * bplet factor = d * b.inv();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}m += 1;continue;}let factor = d * b.inv();let tp = cp.clone();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}bp = tp;b = d;l = i + 1 - l;m = 1;}cp[0..l + 1].to_vec()}// Finds u a^e v^T by using Berlekamp-massey algorithm.// The linear map a is given as a closure.// Complexity: O(n^2 log e + nT(n)) where n = |u| and T(n) = complexity of a.// Ref: https://yukicoder.me/wiki/black_box_linear_algebra// Verified by: yukicoder No. 215 (https://yukicoder.me/submissions/854179)// Depends on: fps/bostan_mori.rsfn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt {let k = u.len();// Find first 2k termslet mut terms = vec![MInt::new(0); 2 * k];let mut cur = u.to_vec();for pos in 0..2 * k {for i in 0..k {terms[pos] += cur[i] * v[i];}cur = a(&cur);}let poly = berlekamp_massey(k, &terms);let mut nom = convolution(&terms[..poly.len() - 1], &poly);nom.truncate(poly.len() - 1);bostan_mori(&nom, &poly, e)}// #{x | x < m, (x as bitstring)[p] = 1}fn count_pop_bits(m: i64, p: usize) -> i64 {let lead = m & ((-1) << (p + 1));let rest = m - lead;let ans = (lead >> 1) + if rest >= 1 << p { rest - (1 << p) } else { 0 };ans}// \sum_{x < m} (x xor 2^p) - xpub fn c(m: i64, p: usize) -> MInt {let tmp = MInt::new(m) - count_pop_bits(m, p) * 2;tmp * MInt::new(2).pow(p as i64)}// \sum{x | x < m, (x as bitstring)[p] = 1}pub fn e(m: i64, p: usize) -> MInt {let lead = m & ((-1) << (p + 1));let rest = m - lead;let p2 = MInt::new(1 << p);let inv2 = MInt::new(2).inv();let count = MInt::new(lead >> (p + 1));let mut tot = p2 * (p2 * 3 - 1) * inv2 * count;tot += count * (count - 1) * inv2 * MInt::new(1 << (p + 1)) * (1 << p);if rest >= 1 << p {let tmp = MInt::new(rest - (1 << p));tot += MInt::new(lead + (1 << p)) * tmp;tot += tmp * (tmp - 1) * inv2;}tot}// \sum_{k < m, (k as bitstring)[p] = 1} (2^i xor k) - kpub fn d(m: i64, p: usize, i: usize) -> MInt {if p == i {return -MInt::new(count_pop_bits(m, p)) * (1 << i);}let lead = m & ((-1) << (p + 1));let rest = m - lead;if i < p {return if rest >= 1 << p {c(rest - (1 << p), i)} else {0.into()};}let mut ans = c(lead >> (p + 1), i - p - 1) * (1 << p) * (1 << (p + 1));let tmp = if rest >= 1 << p {MInt::new(rest - (1 << p)) * (1 << i)} else {MInt::new(0)};if (lead & (1 << i)) != 0 {ans -= tmp;} else {ans += tmp;}ans}// dp[i][j] := i 番目まで埋めて A_i= j のときの積の総和 とすると、dp[i] |-> dp[i+1] は線型変換。// これを行列累乗する必要があるが、そのままだと次元が M であり大きすぎるのである程度まとめる必要がある。// u_j = dp[i][j], v_j = dp[i+1][j] として、u から v を作る線型変換のより小さい不変部分空間を作る。// v_j = \sum_k u_k (k xor j) である。// a := (u_j の和), s_i := {i 番目ビットが立っているもの限定の u_j の和},// b := (v_j の和), t_i := {i 番目ビットが立っているもの限定の v_j の和} とする。// a, s_i から b, t_i が計算できるのがポイント。そのためには以下の補題を使う。// 補題: k = 2^a + 2^b + ... とする。このとき (k xor j) - j = ((2^a xor j) - j) + ((2^b xor j) - j) + ...// この補題を使うと、まず b = (M(M-1)/2) a + \sum c(2^i) s_i が言える。(c(x) := \sum_{j<M} ((x xor j) - j))// 同様に t_j := \sum_{k<M, k の j ビット目は立っている} ka + \sum_i d(2^i) s_i// (d_j(x) := \sum_{k<M, k の j ビット目は立っている} ((x xor k) - k)) が言える。// (証明の方針: b - (M(M-1)/2) a = \sum_{j,k} u_k ((k xor j) - j) = \sum c(2^i) \sum_{k<n, k の i ビット目は立っている} u_k = \sum c(2^i) s_i)// c(2^i), d_j(2^i), e_j := \sum_{k<M, k の j ビット目は立っている} k は高速に計算できる。fn main() {let n: i64 = get();let m: i64 = get();let mut k = 0;while (1 << k) < m {k += 1;}let mut init = vec![MInt::new(0); k + 1];init[0] += m;for i in 0..k {init[i + 1] += count_pop_bits(m, i);}let mut pred = vec![MInt::new(0); k + 1];pred[0] += 1;let mut mat = vec![vec![MInt::new(0); k + 1]; k + 1];let mm = m % MOD;mat[0][0] += mm * (mm - 1) / 2;for i in 0..k {mat[i + 1][0] = c(m, i);}for j in 0..k {mat[0][j + 1] = e(m, j);for i in 0..k {mat[i + 1][j + 1] = d(m, j, i);}}eprintln!("mat = {:?}", mat);eprintln!("init = {:?}", init);let ans = eval_matpow(|v| {let mut res = vec![MInt::new(0); k + 1];for i in 0..k + 1 {for j in 0..k + 1 {res[j] += v[i] * mat[i][j];}}res}, n - 1, &init, &pred);println!("{}", ans);}