結果
問題 | No.2588 Increasing Record |
ユーザー | NyaanNyaan |
提出日時 | 2023-12-21 22:07:36 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 414 ms / 3,000 ms |
コード長 | 29,397 bytes |
コンパイル時間 | 4,175 ms |
コンパイル使用メモリ | 284,012 KB |
実行使用メモリ | 65,584 KB |
最終ジャッジ日時 | 2024-09-27 11:07:21 |
合計ジャッジ時間 | 16,241 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 51 ms
6,940 KB |
testcase_13 | AC | 50 ms
6,944 KB |
testcase_14 | AC | 55 ms
6,940 KB |
testcase_15 | AC | 78 ms
7,296 KB |
testcase_16 | AC | 172 ms
19,532 KB |
testcase_17 | AC | 249 ms
32,164 KB |
testcase_18 | AC | 303 ms
44,152 KB |
testcase_19 | AC | 346 ms
51,708 KB |
testcase_20 | AC | 351 ms
52,372 KB |
testcase_21 | AC | 322 ms
51,976 KB |
testcase_22 | AC | 312 ms
51,708 KB |
testcase_23 | AC | 318 ms
51,716 KB |
testcase_24 | AC | 338 ms
51,860 KB |
testcase_25 | AC | 168 ms
28,256 KB |
testcase_26 | AC | 235 ms
40,364 KB |
testcase_27 | AC | 286 ms
51,460 KB |
testcase_28 | AC | 284 ms
51,128 KB |
testcase_29 | AC | 287 ms
51,740 KB |
testcase_30 | AC | 226 ms
35,032 KB |
testcase_31 | AC | 304 ms
50,684 KB |
testcase_32 | AC | 351 ms
62,636 KB |
testcase_33 | AC | 396 ms
65,356 KB |
testcase_34 | AC | 414 ms
65,580 KB |
testcase_35 | AC | 404 ms
65,584 KB |
testcase_36 | AC | 358 ms
65,548 KB |
testcase_37 | AC | 340 ms
51,416 KB |
testcase_38 | AC | 211 ms
29,984 KB |
testcase_39 | AC | 221 ms
53,128 KB |
testcase_40 | AC | 219 ms
53,332 KB |
testcase_41 | AC | 214 ms
53,780 KB |
testcase_42 | AC | 213 ms
53,884 KB |
testcase_43 | AC | 216 ms
54,644 KB |
testcase_44 | AC | 171 ms
29,312 KB |
testcase_45 | AC | 197 ms
38,660 KB |
testcase_46 | AC | 228 ms
49,044 KB |
ソースコード
/** * date : 2023-12-21 22:07:15 * author : Nyaan */ #define NDEBUG using namespace std; // intrinstic #include <immintrin.h> #include <algorithm> #include <array> #include <bitset> #include <cassert> #include <cctype> #include <cfenv> #include <cfloat> #include <chrono> #include <cinttypes> #include <climits> #include <cmath> #include <complex> #include <cstdarg> #include <cstddef> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <initializer_list> #include <iomanip> #include <ios> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <streambuf> #include <string> #include <tuple> #include <type_traits> #include <typeinfo> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> // utility namespace Nyaan { using ll = long long; using i64 = long long; using u64 = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using V = vector<T>; template <typename T> using VV = vector<vector<T>>; using vi = vector<int>; using vl = vector<long long>; using vd = V<double>; using vs = V<string>; using vvi = vector<vector<int>>; using vvl = vector<vector<long long>>; template <typename T> using minpq = priority_queue<T, vector<T>, greater<T>>; template <typename T, typename U> struct P : pair<T, U> { template <typename... Args> P(Args... args) : pair<T, U>(args...) {} using pair<T, U>::first; using pair<T, U>::second; P &operator+=(const P &r) { first += r.first; second += r.second; return *this; } P &operator-=(const P &r) { first -= r.first; second -= r.second; return *this; } P &operator*=(const P &r) { first *= r.first; second *= r.second; return *this; } template <typename S> P &operator*=(const S &r) { first *= r, second *= r; return *this; } P operator+(const P &r) const { return P(*this) += r; } P operator-(const P &r) const { return P(*this) -= r; } P operator*(const P &r) const { return P(*this) *= r; } template <typename S> P operator*(const S &r) const { return P(*this) *= r; } P operator-() const { return P{-first, -second}; } }; using pl = P<ll, ll>; using pi = P<int, int>; using vp = V<pl>; constexpr int inf = 1001001001; constexpr long long infLL = 4004004004004004004LL; template <typename T> int sz(const T &t) { return t.size(); } template <typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template <typename T> inline T Max(const vector<T> &v) { return *max_element(begin(v), end(v)); } template <typename T> inline T Min(const vector<T> &v) { return *min_element(begin(v), end(v)); } template <typename T> inline long long Sum(const vector<T> &v) { return accumulate(begin(v), end(v), 0LL); } template <typename T> int lb(const vector<T> &v, const T &a) { return lower_bound(begin(v), end(v), a) - begin(v); } template <typename T> int ub(const vector<T> &v, const T &a) { return upper_bound(begin(v), end(v), a) - begin(v); } constexpr long long TEN(int n) { long long ret = 1, x = 10; for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1); return ret; } template <typename T, typename U> pair<T, U> mkp(const T &t, const U &u) { return make_pair(t, u); } template <typename T> vector<T> mkrui(const vector<T> &v, bool rev = false) { vector<T> ret(v.size() + 1); if (rev) { for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1]; } else { for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i]; } return ret; }; template <typename T> vector<T> mkuni(const vector<T> &v) { vector<T> ret(v); sort(ret.begin(), ret.end()); ret.erase(unique(ret.begin(), ret.end()), ret.end()); return ret; } template <typename F> vector<int> mkord(int N, F f) { vector<int> ord(N); iota(begin(ord), end(ord), 0); sort(begin(ord), end(ord), f); return ord; } template <typename T> vector<int> mkinv(vector<T> &v) { int max_val = *max_element(begin(v), end(v)); vector<int> inv(max_val + 1, -1); for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i; return inv; } vector<int> mkiota(int n) { vector<int> ret(n); iota(begin(ret), end(ret), 0); return ret; } template <typename T> T mkrev(const T &v) { T w{v}; reverse(begin(w), end(w)); return w; } template <typename T> bool nxp(vector<T> &v) { return next_permutation(begin(v), end(v)); } // 返り値の型は入力の T に依存 // i 要素目 : [0, a[i]) template <typename T> vector<vector<T>> product(const vector<T> &a) { vector<vector<T>> ret; vector<T> v; auto dfs = [&](auto rc, int i) -> void { if (i == (int)a.size()) { ret.push_back(v); return; } for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back(); }; dfs(dfs, 0); return ret; } // F : function(void(T&)), mod を取る操作 // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I, const function<void(T &)> &f) { T res = I; for (; n; f(a = a * a), n >>= 1) { if (n & 1) f(res = res * a); } return res; } // T : 整数型のときはオーバーフローに注意する template <typename T> T Power(T a, long long n, const T &I = T{1}) { return Power(a, n, I, function<void(T &)>{[](T &) -> void {}}); } template <typename T> T Rev(const T &v) { T res = v; reverse(begin(res), end(res)); return res; } template <typename T> vector<T> Transpose(const vector<T> &v) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { res[j][i] = v[i][j]; } } return res; } template <typename T> vector<T> Rotate(const vector<T> &v, int clockwise = true) { using U = typename T::value_type; int H = v.size(), W = v[0].size(); vector res(W, T(H, U{})); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { if (clockwise) { res[W - 1 - j][i] = v[i][j]; } else { res[j][H - 1 - i] = v[i][j]; } } } return res; } } // namespace Nyaan // bit operation namespace Nyaan { __attribute__((target("popcnt"))) inline int popcnt(const u64 &a) { return _mm_popcnt_u64(a); } inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; } inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; } template <typename T> inline int gbit(const T &a, int i) { return (a >> i) & 1; } template <typename T> inline void sbit(T &a, int i, bool b) { if (gbit(a, i) != b) a ^= T(1) << i; } constexpr long long PW(int n) { return 1LL << n; } constexpr long long MSK(int n) { return (1LL << n) - 1; } } // namespace Nyaan // inout namespace Nyaan { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; } istream &operator>>(istream &is, __int128_t &x) { string S; is >> S; x = 0; int flag = 0; for (auto &c : S) { if (c == '-') { flag = true; continue; } x *= 10; x += c - '0'; } if (flag) x = -x; return is; } istream &operator>>(istream &is, __uint128_t &x) { string S; is >> S; x = 0; for (auto &c : S) { x *= 10; x += c - '0'; } return is; } ostream &operator<<(ostream &os, __int128_t x) { if (x == 0) return os << 0; if (x < 0) os << '-', x = -x; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } ostream &operator<<(ostream &os, __uint128_t x) { if (x == 0) return os << 0; string S; while (x) S.push_back('0' + x % 10), x /= 10; reverse(begin(S), end(S)); return os << S; } void in() {} template <typename T, class... U> void in(T &t, U &...u) { cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u) { cout << t; if (sizeof...(u)) cout << sep; out(u...); } struct IoSetupNya { IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetupnya; } // namespace Nyaan // debug #ifdef NyaanDebug #define trc(...) (void(0)) #else #define trc(...) (void(0)) #endif #ifdef NyaanLocal #define trc2(...) (void(0)) #else #define trc2(...) (void(0)) #endif // macro #define each(x, v) for (auto&& x : v) #define each2(x, y, v) for (auto&& [x, y] : v) #define all(v) (v).begin(), (v).end() #define rep(i, N) for (long long i = 0; i < (long long)(N); i++) #define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--) #define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++) #define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--) #define reg(i, a, b) for (long long i = (a); i < (b); i++) #define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--) #define fi first #define se second #define ini(...) \ int __VA_ARGS__; \ in(__VA_ARGS__) #define inl(...) \ long long __VA_ARGS__; \ in(__VA_ARGS__) #define ins(...) \ string __VA_ARGS__; \ in(__VA_ARGS__) #define in2(s, t) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i]); \ } #define in3(s, t, u) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i]); \ } #define in4(s, t, u, v) \ for (int i = 0; i < (int)s.size(); i++) { \ in(s[i], t[i], u[i], v[i]); \ } #define die(...) \ do { \ Nyaan::out(__VA_ARGS__); \ return; \ } while (0) namespace Nyaan { void solve(); } int main() { Nyaan::solve(); } // template <typename T> struct edge { int src, to; T cost; edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {} edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnweightedGraph = vector<vector<int>>; // Input of (Unweighted) Graph UnweightedGraph graph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { UnweightedGraph g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; if (is_1origin) x--, y--; g[x].push_back(y); if (!is_directed) g[y].push_back(x); } return g; } // Input of Weighted Graph template <typename T> WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false, bool is_1origin = true) { WeightedGraph<T> g(N); if (M == -1) M = N - 1; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; cin >> c; if (is_1origin) x--, y--; g[x].emplace_back(x, y, c); if (!is_directed) g[y].emplace_back(y, x, c); } return g; } // Input of Edges template <typename T> Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) { Edges<T> es; for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; es.emplace_back(x, y, c); } return es; } // Input of Adjacency Matrix template <typename T> vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true, bool is_directed = false, bool is_1origin = true) { vector<vector<T>> d(N, vector<T>(N, INF)); for (int _ = 0; _ < M; _++) { int x, y; cin >> x >> y; T c; if (is_weighted) cin >> c; else c = 1; if (is_1origin) x--, y--; d[x][y] = c; if (!is_directed) d[y][x] = c; } return d; } /** * @brief グラフテンプレート * @docs docs/graph/graph-template.md */ // template <typename T> struct BinaryIndexedTree { int N; vector<T> data; BinaryIndexedTree() = default; BinaryIndexedTree(int size) { init(size); } void init(int size) { N = size + 2; data.assign(N + 1, {}); } // get sum of [0,k] T sum(int k) const { if (k < 0) return T{}; // return 0 if k < 0 T ret{}; for (++k; k > 0; k -= k & -k) ret += data[k]; return ret; } // getsum of [l,r] inline T sum(int l, int r) const { return sum(r) - sum(l - 1); } // get value of k inline T operator[](int k) const { return sum(k) - sum(k - 1); } // data[k] += x void add(int k, T x) { for (++k; k < N; k += k & -k) data[k] += x; } // range add x to [l,r] void imos(int l, int r, T x) { add(l, x); add(r + 1, -x); } // minimize i s.t. sum(i) >= w int lower_bound(T w) { if (w <= 0) return 0; int x = 0; for (int k = 1 << __lg(N); k; k >>= 1) { if (x + k <= N - 1 && data[x + k] < w) { w -= data[x + k]; x += k; } } return x; } // minimize i s.t. sum(i) > w int upper_bound(T w) { if (w < 0) return 0; int x = 0; for (int k = 1 << __lg(N); k; k >>= 1) { if (x + k <= N - 1 && data[x + k] <= w) { w -= data[x + k]; x += k; } } return x; } }; /** * @brief Binary Indexed Tree(Fenwick Tree) * @docs docs/data-structure/binary-indexed-tree.md */ struct UnionFind { vector<int> data; UnionFind(int N) : data(N, -1) {} int find(int k) { return data[k] < 0 ? k : data[k] = find(data[k]); } int unite(int x, int y) { if ((x = find(x)) == (y = find(y))) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return true; } // f ... merge function template<typename F> int unite(int x, int y,const F &f) { if ((x = find(x)) == (y = find(y))) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; f(x, y); return true; } int size(int k) { return -data[find(k)]; } int same(int x, int y) { return find(x) == find(y); } }; /** * @brief Union Find(Disjoint Set Union) * @docs docs/data-structure/union-find.md */ template <typename T, typename F> struct SegmentTree { int N; int size; vector<T> seg; const F f; const T I; SegmentTree(F _f, const T &I_) : N(0), size(0), f(_f), I(I_) {} SegmentTree(int _N, F _f, const T &I_) : f(_f), I(I_) { init(_N); } SegmentTree(const vector<T> &v, F _f, T I_) : f(_f), I(I_) { init(v.size()); for (int i = 0; i < (int)v.size(); i++) { seg[i + size] = v[i]; } build(); } void init(int _N) { N = _N; size = 1; while (size < N) size <<= 1; seg.assign(2 * size, I); } void set(int k, T x) { seg[k + size] = x; } void build() { for (int k = size - 1; k > 0; k--) { seg[k] = f(seg[2 * k], seg[2 * k + 1]); } } void update(int k, T x) { k += size; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k], seg[2 * k + 1]); } } void add(int k, T x) { k += size; seg[k] += x; while (k >>= 1) { seg[k] = f(seg[2 * k], seg[2 * k + 1]); } } // query to [a, b) T query(int a, int b) { T L = I, R = I; for (a += size, b += size; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } T &operator[](const int &k) { return seg[k + size]; } // check(a[l] * ... * a[r-1]) が true となる最大の r // (右端まですべて true なら N を返す) template <class C> int max_right(int l, C check) { assert(0 <= l && l <= N); assert(check(I) == true); if (l == N) return N; l += size; T sm = I; do { while (l % 2 == 0) l >>= 1; if (!check(f(sm, seg[l]))) { while (l < size) { l = (2 * l); if (check(f(sm, seg[l]))) { sm = f(sm, seg[l]); l++; } } return l - size; } sm = f(sm, seg[l]); l++; } while ((l & -l) != l); return N; } // check(a[l] * ... * a[r-1]) が true となる最小の l // (左端まで true なら 0 を返す) template <typename C> int min_left(int r, C check) { assert(0 <= r && r <= N); assert(check(I) == true); if (r == 0) return 0; r += size; T sm = I; do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!check(f(seg[r], sm))) { while (r < size) { r = (2 * r + 1); if (check(f(seg[r], sm))) { sm = f(seg[r], sm); r--; } } return r + 1 - size; } sm = f(seg[r], sm); } while ((r & -r) != r); return 0; } }; template <typename G> struct HeavyLightDecomposition { private: void dfs_sz(int cur) { size[cur] = 1; for (auto& dst : g[cur]) { if (dst == par[cur]) { if (g[cur].size() >= 2 && int(dst) == int(g[cur][0])) swap(g[cur][0], g[cur][1]); else continue; } depth[dst] = depth[cur] + 1; par[dst] = cur; dfs_sz(dst); size[cur] += size[dst]; if (size[dst] > size[g[cur][0]]) { swap(dst, g[cur][0]); } } } void dfs_hld(int cur) { down[cur] = id++; for (auto dst : g[cur]) { if (dst == par[cur]) continue; nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst)); dfs_hld(dst); } up[cur] = id; } // [u, v) vector<pair<int, int>> ascend(int u, int v) const { vector<pair<int, int>> res; while (nxt[u] != nxt[v]) { res.emplace_back(down[u], down[nxt[u]]); u = par[nxt[u]]; } if (u != v) res.emplace_back(down[u], down[v] + 1); return res; } // (u, v] vector<pair<int, int>> descend(int u, int v) const { if (u == v) return {}; if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}}; auto res = descend(u, par[nxt[v]]); res.emplace_back(down[nxt[v]], down[v]); return res; } public: G& g; int id; vector<int> size, depth, down, up, nxt, par; HeavyLightDecomposition(G& _g, int root = 0) : g(_g), id(0), size(g.size(), 0), depth(g.size(), 0), down(g.size(), -1), up(g.size(), -1), nxt(g.size(), root), par(g.size(), root) { dfs_sz(root); dfs_hld(root); } void build(int root) { dfs_sz(root); dfs_hld(root); } pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); } template <typename F> void path_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) { int s = a + 1, t = b; s > t ? f(t, s) : f(s, t); } if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) { int s = a, t = b + 1; s > t ? f(t, s) : f(s, t); } } template <typename F> void path_noncommutative_query(int u, int v, bool vertex, const F& f) { int l = lca(u, v); for (auto&& [a, b] : ascend(u, l)) f(a + 1, b); if (vertex) f(down[l], down[l] + 1); for (auto&& [a, b] : descend(l, v)) f(a, b + 1); } template <typename F> void subtree_query(int u, bool vertex, const F& f) { f(down[u] + int(!vertex), up[u]); } int lca(int a, int b) { while (nxt[a] != nxt[b]) { if (down[a] < down[b]) swap(a, b); a = par[nxt[a]]; } return depth[a] < depth[b] ? a : b; } int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; } }; /** * @brief Heavy Light Decomposition(重軽分解) * @docs docs/tree/heavy-light-decomposition.md */ template <typename G> struct Tree { private: G& g; int root; vector<array<int, 24>> bl; vector<int> dp; void build() { bl.resize(g.size()); dp.resize(g.size()); for (auto& v : bl) fill(begin(v), end(v), -1); dfs(root, -1, 0); } void dfs(int c, int p, int _dp) { dp[c] = _dp; for (int i = p, x = 0; i != -1;) { bl[c][x] = i; i = bl[i][x], x++; } for (auto& d : g[c]) { if (d == p) continue; dfs(d, c, _dp + 1); } } public: Tree(G& _g, int _r = 0) : g(_g), root(_r) { build(); } int depth(int u) const { return dp[u]; } int par(int u) const { return u == root ? -1 : bl[u][0]; } int kth_ancestor(int u, int k) const { if (dp[u] < k) return -1; while (k) { int t = __builtin_ctz(k); u = bl[u][t], k ^= 1 << t; } return u; } int nxt(int s, int t) const { if (dp[s] >= dp[t]) return par(s); int u = kth_ancestor(t, dp[t] - dp[s] - 1); return bl[u][0] == s ? u : bl[s][0]; } vector<int> path(int s, int t) const { vector<int> pre, suf; while (dp[s] > dp[t]) { pre.push_back(s); s = bl[s][0]; } while (dp[s] < dp[t]) { suf.push_back(t); t = bl[t][0]; } while (s != t) { pre.push_back(s); suf.push_back(t); s = bl[s][0]; t = bl[t][0]; } pre.push_back(s); reverse(begin(suf), end(suf)); copy(begin(suf), end(suf), back_inserter(pre)); return pre; } int lca(int u, int v) { if (dp[u] != dp[v]) { if (dp[u] > dp[v]) swap(u, v); v = kth_ancestor(v, dp[v] - dp[u]); } if (u == v) return u; for (int i = __lg(dp[u]); i >= 0; --i) { if (dp[u] < (1 << i)) continue; if (bl[u][i] != bl[v][i]) u = bl[u][i], v = bl[v][i]; } return bl[u][0]; } // u - v 間のパス上の頂点のうち u から距離 i の頂点 // (dist(u, v) < i のとき -1) int jump(int u, int v, int i) { int lc = lca(u, v); int d1 = dp[u] - dp[lc]; if (i <= d1) return kth_ancestor(u, i); int d = d1 + dp[v] - dp[lc]; if (i <= d) return kth_ancestor(v, d - i); return -1; } }; /** * @brief 木に対する一般的なクエリ * @docs docs/tree/tree-query.md */ // template <uint32_t mod> struct LazyMontgomeryModInt { using mint = LazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static constexpr u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static constexpr u32 r = get_r(); static constexpr u32 n2 = -u64(mod) % mod; static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30"); static_assert((mod & 1) == 1, "invalid, mod % 2 == 0"); static_assert(r * mod == 1, "this code has bugs."); u32 a; constexpr LazyMontgomeryModInt() : a(0) {} constexpr LazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static constexpr u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } constexpr mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } constexpr mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } constexpr mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } constexpr mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } constexpr mint operator+(const mint &b) const { return mint(*this) += b; } constexpr mint operator-(const mint &b) const { return mint(*this) -= b; } constexpr mint operator*(const mint &b) const { return mint(*this) *= b; } constexpr mint operator/(const mint &b) const { return mint(*this) /= b; } constexpr bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } constexpr bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } constexpr mint operator-() const { return mint() - mint(*this); } constexpr mint operator+() const { return mint(*this); } constexpr mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } constexpr mint inverse() const { int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, u -= t * v; tmp = x, x = y, y = tmp; tmp = u, u = v, v = tmp; } return mint{u}; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = LazyMontgomeryModInt<mod>(t); return (is); } constexpr u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static constexpr u32 get_mod() { return mod; } }; using namespace std; // コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」 // を入れると倍速くらいになる // mod を超えて前計算して 0 割りを踏むバグは対策済み template <typename T> struct Binomial { vector<T> f, g, h; Binomial(int MAX = 0) { assert(T::get_mod() != 0 && "Binomial<mint>()"); f.resize(1, T{1}); g.resize(1, T{1}); h.resize(1, T{1}); if (MAX > 0) extend(MAX + 1); } void extend(int m = -1) { int n = f.size(); if (m == -1) m = n * 2; m = min<int>(m, T::get_mod()); if (n >= m) return; f.resize(m); g.resize(m); h.resize(m); for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i); g[m - 1] = f[m - 1].inverse(); h[m - 1] = g[m - 1] * f[m - 2]; for (int i = m - 2; i >= n; i--) { g[i] = g[i + 1] * T(i + 1); h[i] = g[i] * f[i - 1]; } } T fac(int i) { if (i < 0) return T(0); while (i >= (int)f.size()) extend(); return f[i]; } T finv(int i) { if (i < 0) return T(0); while (i >= (int)g.size()) extend(); return g[i]; } T inv(int i) { if (i < 0) return -inv(-i); while (i >= (int)h.size()) extend(); return h[i]; } T C(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r) * finv(r); } inline T operator()(int n, int r) { return C(n, r); } template <typename I> T multinomial(const vector<I>& r) { static_assert(is_integral<I>::value == true); int n = 0; for (auto& x : r) { if (x < 0) return T(0); n += x; } T res = fac(n); for (auto& x : r) res *= finv(x); return res; } template <typename I> T operator()(const vector<I>& r) { return multinomial(r); } T C_naive(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); T ret = T(1); r = min(r, n - r); for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--); return ret; } T P(int n, int r) { if (n < 0 || n < r || r < 0) return T(0); return fac(n) * finv(n - r); } // [x^r] 1 / (1-x)^n T H(int n, int r) { if (n < 0 || r < 0) return T(0); return r == 0 ? 1 : C(n + r - 1, r); } }; // using namespace Nyaan; using mint = LazyMontgomeryModInt<998244353>; // using mint = LazyMontgomeryModInt<1000000007>; using vm = vector<mint>; using vvm = vector<vm>; Binomial<mint> C; using namespace Nyaan; void q() { inl(N, M); auto G = graph(N, M); vvi g(N); { vi mx = mkiota(N); UnionFind uf(N); rep(i, N) each(j, G[i]) { if (j < i and !uf.same(i, j)) { int k = mx[uf.find(j)]; g[i].push_back(k); g[k].push_back(i); uf.unite(i, k); mx[uf.find(i)] = i; } } } // trc(g); HeavyLightDecomposition hld(g, N - 1); Tree tree(g, N - 1); SegmentTree dp( N, [](mint a, mint b) { return a + b; }, mint{}); rep(i, N) { mint cur = 1; vi chds; each(j, G[i]) { if (j < i) chds.push_back(j); } sort(all(chds), [&](int s, int t) { return hld.down[s] < hld.down[t]; }); trc(chds); // aux tree vi rs; rs.push_back(i); each(c, chds) { int l = hld.lca(rs.back(), c); trc(c, l, rs); while (hld.down[l] < hld.down[rs.back()] and hld.down[rs.back()] < hld.up[l]) { rs.pop_back(); assert(!rs.empty()); } rs.push_back(c); assert(l != c); int nxt = tree.nxt(l, c); hld.path_query(nxt, c, true, [&](int u, int v) { cur += dp.query(u, v); }); } dp.update(hld.idx(i).fi, cur); } // rep(i, N) cerr << dp[i] << " \n"[i + 1 == N]; out(dp.query(0, N)); } void Nyaan::solve() { int t = 1; // in(t); while (t--) q(); }