結果
問題 | No.2594 Mix shake!! |
ユーザー | tko919 |
提出日時 | 2023-12-23 04:01:25 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 33,283 bytes |
コンパイル時間 | 5,852 ms |
コンパイル使用メモリ | 286,032 KB |
実行使用メモリ | 74,716 KB |
最終ジャッジ日時 | 2024-09-27 12:04:41 |
合計ジャッジ時間 | 11,608 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,888 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | WA | - |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | AC | 910 ms
18,432 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | WA | - |
testcase_14 | AC | 39 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | WA | - |
testcase_22 | AC | 2 ms
6,944 KB |
testcase_23 | AC | 13 ms
6,944 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | WA | - |
testcase_27 | AC | 2 ms
6,944 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | TLE | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
testcase_53 | -- | - |
testcase_54 | -- | - |
testcase_55 | -- | - |
testcase_56 | -- | - |
testcase_57 | -- | - |
testcase_58 | -- | - |
testcase_59 | -- | - |
testcase_60 | -- | - |
testcase_61 | -- | - |
testcase_62 | -- | - |
testcase_63 | -- | - |
testcase_64 | -- | - |
testcase_65 | -- | - |
testcase_66 | -- | - |
testcase_67 | -- | - |
testcase_68 | -- | - |
testcase_69 | -- | - |
testcase_70 | -- | - |
testcase_71 | -- | - |
testcase_72 | -- | - |
testcase_73 | -- | - |
testcase_74 | -- | - |
testcase_75 | -- | - |
testcase_76 | -- | - |
testcase_77 | -- | - |
testcase_78 | -- | - |
testcase_79 | -- | - |
testcase_80 | -- | - |
testcase_81 | -- | - |
testcase_82 | -- | - |
testcase_83 | -- | - |
testcase_84 | -- | - |
testcase_85 | -- | - |
testcase_86 | -- | - |
testcase_87 | -- | - |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++) #define ALL(v) (v).begin(),(v).end() #define UNIQUE(v) sort(ALL(v)),(v).erase(unique(ALL(v)),(v).end()) #define SZ(v) (int)v.size() #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(v,x) int(lower_bound(ALL(v),(x))-(v).begin()) #define UB(v,x) int(upper_bound(ALL(v),(x))-(v).begin()) using ll=long long int; using ull=unsigned long long; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} template<typename T,typename U>T ceil(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?(x+y-1)/y:x/y);} template<typename T,typename U>T floor(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?x/y:(x-y+1)/y);} template<typename T>int popcnt(T x){return __builtin_popcountll(x);} template<typename T>int topbit(T x){return (x==0?-1:63-__builtin_clzll(x));} template<typename T>int lowbit(T x){return (x==0?-1:__builtin_ctzll(x));} #line 2 "library/Utility/fastio.hpp" #include <unistd.h> class FastIO{ static constexpr int L=1<<16; char rdbuf[L]; int rdLeft=0,rdRight=0; inline void reload(){ int len=rdRight-rdLeft; memmove(rdbuf,rdbuf+rdLeft,len); rdLeft=0,rdRight=len; rdRight+=fread(rdbuf+len,1,L-len,stdin); } inline bool skip(){ for(;;){ while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++; if(rdLeft==rdRight){ reload(); if(rdLeft==rdRight)return false; } else break; } return true; } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__int128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48)); } return true; } inline bool _read(__uint128_t& x){ if(!skip())return false; if(rdLeft+40>=rdRight)reload(); x=0; while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } return true; } template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){ if(!skip())return false; if(rdLeft+20>=rdRight)reload(); bool neg=false; if(rdbuf[rdLeft]=='-'){ neg=true; rdLeft++; } x=0; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x=x*10+(rdbuf[rdLeft++]^48); } if(rdbuf[rdLeft]!='.')return true; rdLeft++; T base=.1; while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){ x+=base*(rdbuf[rdLeft++]^48); base*=.1; } if(neg)x=-x; return true; } inline bool _read(char& x){ if(!skip())return false; if(rdLeft+1>=rdRight)reload(); x=rdbuf[rdLeft++]; return true; } inline bool _read(string& x){ if(!skip())return false; for(;;){ int pos=rdLeft; while(pos<rdRight and rdbuf[pos]>' ')pos++; x.append(rdbuf+rdLeft,pos-rdLeft); if(rdLeft==pos)break; rdLeft=pos; if(rdLeft==rdRight)reload(); else break; } return true; } template<typename T>inline bool _read(vector<T>& v){ for(auto& x:v){ if(!_read(x))return false; } return true; } char wtbuf[L],tmp[50]; int wtRight=0; inline void _write(const char& x){ if(wtRight>L-32)flush(); wtbuf[wtRight++]=x; } inline void _write(const string& x){ for(auto& c:x)_write(c); } template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){ if(wtRight>L-32)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) { switch (sizeof(x)) { case 2: _write("32768"); return; case 4: _write("2147483648"); return; case 8: _write("9223372036854775808"); return; } } x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__int128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } else if(x<0){ _write('-'); x=-x; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(__uint128_t x){ if(wtRight>L-40)flush(); if(x==0){ _write('0'); return; } int pos=0; while(x!=0){ tmp[pos++]=char((x%10)|48); x/=10; } rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i]; wtRight+=pos; } inline void _write(double x){ ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); _write(s); } template<typename T>inline void _write(const vector<T>& v){ rep(i,0,v.size()){ if(i)_write(' '); _write(v[i]); } } public: FastIO(){} ~FastIO(){flush();} inline void read(){} template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){ assert(_read(head)); read(tail...); } template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');} template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){ _write(head); write<ln,true>(tail...); if(space)_write(' '); } inline void flush(){ fwrite(wtbuf,1,wtRight,stdout); wtRight=0; } }; /** * @brief Fast IO */ #line 3 "sol.cpp" #line 2 "library/Convolution/ntt.hpp" template <typename T> struct NTT { static constexpr int rank2 = __builtin_ctzll(T::get_mod() - 1); std::array<T, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<T, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<T, std::max(0, rank2 - 2 + 1)> rate2; std::array<T, std::max(0, rank2 - 2 + 1)> irate2; std::array<T, std::max(0, rank2 - 3 + 1)> rate3; std::array<T, std::max(0, rank2 - 3 + 1)> irate3; NTT() { T g = 2; while (g.pow((T::get_mod() - 1) >> 1) == 1) { g += 1; } root[rank2] = g.pow((T::get_mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { T prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { T prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } void ntt(std::vector<T> &a, bool type = 0) { int n = int(a.size()); int h = __builtin_ctzll((unsigned int)n); if (type) { int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); T irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(T::get_mod() + l.v - r.v) * irot.v; ; } if (s + 1 != (1 << (len - 1))) irot *= irate2[__builtin_ctzll(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); T irot = 1, iimag = iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { T irot2 = irot * irot; T irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].v; auto a1 = 1ULL * a[i + offset + 1 * p].v; auto a2 = 1ULL * a[i + offset + 2 * p].v; auto a3 = 1ULL * a[i + offset + 3 * p].v; auto a2na3iimag = 1ULL * T((T::get_mod() + a2 - a3) * iimag.v).v; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (T::get_mod() - a1) + a2na3iimag) * irot.v; a[i + offset + 2 * p] = (a0 + a1 + (T::get_mod() - a2) + (T::get_mod() - a3)) * irot2.v; a[i + offset + 3 * p] = (a0 + (T::get_mod() - a1) + (T::get_mod() - a2na3iimag)) * irot3.v; } if (s + 1 != (1 << (len - 2))) irot *= irate3[__builtin_ctzll(~(unsigned int)(s))]; } len -= 2; } } T e = T(n).inv(); for (auto &x : a) x *= e; } else { int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); T rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= rate2[__builtin_ctzll(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); T rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { T rot2 = rot * rot; T rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * T::get_mod() * T::get_mod(); auto a0 = 1ULL * a[i + offset].v; auto a1 = 1ULL * a[i + offset + p].v * rot.v; auto a2 = 1ULL * a[i + offset + 2 * p].v * rot2.v; auto a3 = 1ULL * a[i + offset + 3 * p].v * rot3.v; auto a1na3imag = 1ULL * T(a1 + mod2 - a3).v * imag.v; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= rate3[__builtin_ctzll(~(unsigned int)(s))]; } len += 2; } } } } vector<T> mult(const vector<T> &a, const vector<T> &b) { if (a.empty() or b.empty()) return vector<T>(); int as = a.size(), bs = b.size(); int n = as + bs - 1; if (as <= 30 or bs <= 30) { if (as > 30) return mult(b, a); vector<T> res(n); rep(i, 0, as) rep(j, 0, bs) res[i + j] += a[i] * b[j]; return res; } int m = 1; while (m < n) m <<= 1; vector<T> res(m); rep(i, 0, as) res[i] = a[i]; ntt(res); if (a == b) rep(i, 0, m) res[i] *= res[i]; else { vector<T> c(m); rep(i, 0, bs) c[i] = b[i]; ntt(c); rep(i, 0, m) res[i] *= c[i]; } ntt(res, 1); res.resize(n); return res; } }; /** * @brief Number Theoretic Transform */ #line 2 "library/Math/modint.hpp" template <int mod = 1000000007> struct fp { int v; static constexpr int get_mod() { return mod; } int inv() const { int tmp, a = v, b = mod, x = 1, y = 0; while (b) tmp = a / b, a -= tmp * b, swap(a, b), x -= tmp * y, swap(x, y); if (x < 0) { x += mod; } return x; } fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {} fp operator-() const { return fp() - *this; } fp pow(ll t) { assert(t >= 0); fp res = 1, b = *this; while (t) { if (t & 1) res *= b; b *= b; t >>= 1; } return res; } fp &operator+=(const fp &x) { if ((v += x.v) >= mod) v -= mod; return *this; } fp &operator-=(const fp &x) { if ((v += mod - x.v) >= mod) v -= mod; return *this; } fp &operator*=(const fp &x) { v = ll(v) * x.v % mod; return *this; } fp &operator/=(const fp &x) { v = ll(v) * x.inv() % mod; return *this; } fp operator+(const fp &x) const { return fp(*this) += x; } fp operator-(const fp &x) const { return fp(*this) -= x; } fp operator*(const fp &x) const { return fp(*this) *= x; } fp operator/(const fp &x) const { return fp(*this) /= x; } bool operator==(const fp &x) const { return v == x.v; } bool operator!=(const fp &x) const { return v != x.v; } friend istream &operator>>(istream &is, fp &x) { return is >> x.v; } friend ostream &operator<<(ostream &os, const fp &x) { return os << x.v; } }; template <typename T> T Inv(ll n) { static const int md = T::get_mod(); static vector<T> buf({0, 1}); assert(n > 0); n %= md; while (SZ(buf) <= n) { int k = SZ(buf), q = (md + k - 1) / k; buf.push_back(buf[k * q - md] * q); } return buf[n]; } template <typename T> T Fact(ll n, bool inv = 0) { static const int md = T::get_mod(); static vector<T> buf({1, 1}), ibuf({1, 1}); assert(n >= 0 and n < md); while (SZ(buf) <= n) { buf.push_back(buf.back() * SZ(buf)); ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf))); } return inv ? ibuf[n] : buf[n]; } template <typename T> T nPr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1); } template <typename T> T nCr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1); } template <typename T> T nHr(int n, int r, bool inv = 0) { return nCr<T>(n + r - 1, r, inv); } /** * @brief Modint */ #line 4 "library/Convolution/arbitrary.hpp" using M1 = fp<1045430273>; using M2 = fp<1051721729>; using M3 = fp<1053818881>; NTT<fp<1045430273>> N1; NTT<fp<1051721729>> N2; NTT<fp<1053818881>> N3; const M2 r_12 = M2(M1::get_mod()).inv(); const M3 r_13 = M3(M1::get_mod()).inv(); const M3 r_23 = M3(M2::get_mod()).inv(); const M3 r_1323 = r_13 * r_23; template <typename T> vector<T> ArbitraryMult(const vector<int> &a, const vector<int> &b) { if (a.empty() or b.empty()) return vector<T>(); int n = a.size() + b.size() - 1; vector<T> res(n); if (min(a.size(), b.size()) <= 60) { rep(i, 0, a.size()) rep(j, 0, b.size()) res[i + j] += T(a[i]) * b[j]; return res; } vector<int> vals[3]; vector<M1> a1(ALL(a)), b1(ALL(b)), c1 = N1.mult(a1, b1); vector<M2> a2(ALL(a)), b2(ALL(b)), c2 = N2.mult(a2, b2); vector<M3> a3(ALL(a)), b3(ALL(b)), c3 = N3.mult(a3, b3); for (M1 x : c1) vals[0].push_back(x.v); for (M2 x : c2) vals[1].push_back(x.v); for (M3 x : c3) vals[2].push_back(x.v); T w1(M1::get_mod()), w2 = w1 * T(M2::get_mod()); rep(i, 0, n) { T p = vals[0][i]; T q = (vals[1][i] + M2::get_mod() - p) * r_12.v % M2::get_mod(); T r = ((vals[2][i] + M3::get_mod() - p) * r_1323.v + (M3::get_mod() - q) * r_23.v) % M3::get_mod(); res[i] = (p + q * w1 + r * w2); } return res; } /** * @brief Arbitrary Mod Convolution */ #line 3 "library/Math/bigint.hpp" template <int D> struct bigint { using u128 = __uint128_t; static const int B = pow(10, D); int sign = 0; vector<int> v; static int get_D() { return D; } static int get_B() { return B; } bigint(ll x = 0) { if (x < 0) x *= -1, sign = 1; while (x) { v.push_back(x % B); x /= B; } } bigint(string s) { if (s[0] == '-') s.erase(s.begin()), sign = 1; int add = 0, cnt = 0, base = 1; while (s.size()) { if (cnt == D) { v.push_back(add); cnt = 0; add = 0; base = 1; } add = (s.back() - '0') * base + add; cnt++; base *= 10; s.pop_back(); } if (add) v.push_back(add); } bigint operator-() const { bigint res = *this; res.sign ^= 1; return res; } bigint abs() const { bigint res = *this; res.sign = 0; return res; } int &operator[](const int i) { return v[i]; } int size() const { return v.size(); } void norm() { rep(i, 0, v.size() - 1) { if (v[i] >= 0) { v[i + 1] += v[i] / B; v[i] %= B; } else { int c = (-v[i] + B - 1) / B; v[i] += c * B; v[i + 1] -= c; } } while (!v.empty() and v.back() >= B) { int c = v.back() / B; v.back() %= B; v.push_back(c); } while (!v.empty() and v.back() == 0) v.pop_back(); } string to_str() const { string res; if (v.empty()) return "0"; if (sign) res += '-'; res += to_string(v.back()); for (int i = v.size() - 2; i >= 0; i--) { string add; int w = v[i]; rep(_, 0, D) { add += ('0' + (w % 10)); w /= 10; } reverse(ALL(add)); res += add; } return res; } friend istream &operator>>(istream &is, bigint<D> &x) { string tmp; is >> tmp; x = bigint(tmp); return is; } friend ostream &operator<<(ostream &os, bigint<D> x) { os << x.to_str(); return os; } bigint &operator<<=(const int &x) { if (!v.empty()) { vector<int> add(x, 0); v.insert(v.begin(), ALL(add)); } return *this; } bigint &operator>>=(const int &x) { v = vector<int>(v.begin() + min(x, (int)v.size()), v.end()); return *this; } bigint &operator+=(const bigint &x) { if (sign != x.sign) { *this -= (-x); return *this; } if ((int)v.size() < (int)x.size()) v.resize(x.size(), 0); rep(i, 0, x.size()) { v[i] += x.v[i]; } norm(); return *this; } bigint &operator-=(const bigint &x) { if (sign != x.sign) { *this += (-x); return *this; } if (abs() < x.abs()) { *this = x - (*this); sign ^= 1; return *this; } rep(i, 0, x.size()) { v[i] -= x.v[i]; } norm(); return *this; } bigint &operator*=(const bigint &x) { sign ^= x.sign; auto v1 = ArbitraryMult<u128>(v, x.v); u128 add = 0; v.clear(); for (int i = 0;; i++) { if (i >= v1.size() and add == 0) break; if (i < v1.size()) add += v1[i]; v.push_back(add % B); add /= B; } return *this; } bigint &operator/=(const bigint &x) { bigint a = abs(), b = x.abs(); sign ^= x.sign; if (a < b) return *this = bigint(); if (b == bigint(1)) return *this = a; int d = a.size() - b.size() + 1; bigint inv(1LL * B * B / b.v.back()), pre; int cur = 2, bcur = 1; pre = bigint(0); while (inv != pre or bcur < b.size()) { bcur = min(bcur << 1, b.size()); bigint c; c.v = vector<int>(b.v.end() - bcur, b.v.end()); pre = inv; inv *= ((bigint(2) << (cur + bcur - 1)) - inv * c); cur = min(cur << 1, d); inv.v = vector<int>(inv.v.end() - cur, inv.v.end()); } inv.v = vector<int>(inv.v.end() - d, inv.v.end()); bigint res = a * inv; res >>= (a.size()); bigint mul = res * b; while (mul + b <= a) { res += bigint(1); mul += b; } v = res.v; return *this; } bigint &operator%=(const bigint &x) { bigint div = (*this) / x; (*this) -= div * x; return *this; } bigint square() { bigint res = *this; res.sign = 0; auto v1 = ArbitraryMult<u128>(v, v); res.v.assign(v1.size(), 0); rep(i, 0, v1.size()) { ll val = v1[i]; for (int j = i; val; j++) { if (j == (int)res.v.size()) res.v.push_back(0); res.v[j] += val % B; val /= B; } } res.norm(); return res; } bigint mul(ll x) { bigint res = *this; if (x < 0) res.sign ^= 1, x *= -1; for (int i = res.v.size() - 1; i >= 0; i--) res.v[i] *= x; res.norm(); return res; } bigint div(ll x) { bigint res = *this; if (x < 0) res.sign ^= 1, x *= -1; for (int i = res.v.size() - 1; i >= 0; i--) { if (res.v[i] % x != 0 and i != 0) { res.v[i - 1] += B * (res.v[i] % x); } res.v[i] /= x; } res.norm(); return res; } bigint operator<<(const int &x) const { return bigint(*this) <<= x; } bigint operator>>(const int &x) const { return bigint(*this) >>= x; } bigint operator+(const bigint &x) const { return bigint(*this) += x; } bigint operator-(const bigint &x) const { return bigint(*this) -= x; } bigint operator*(const bigint &x) const { return bigint(*this) *= x; } bigint operator/(const bigint &x) const { return bigint(*this) /= x; } bigint operator%(const bigint &x) const { return bigint(*this) %= x; } bool operator<(const bigint &x) const { if (sign != x.sign) return sign > x.sign; if ((int)v.size() != (int)x.size()) { if (sign) return (int)x.size() < (int)v.size(); else return (int)v.size() < (int)x.size(); } for (int i = v.size() - 1; i >= 0; i--) if (v[i] != x.v[i]) { if (sign) return x.v[i] < v[i]; else return v[i] < x.v[i]; } return false; } bool operator>(const bigint &x) const { return x < *this; } bool operator<=(const bigint &x) const { return !(*this > x); } bool operator>=(const bigint &x) const { return !(*this < x); } bool operator==(const bigint &x) const { return !(*this < x) and !(*this > x); } bool operator!=(const bigint &x) const { return !(*this == x); } }; typedef bigint<9> Bigint; struct Bigfloat { Bigint v; int p = 0; Bigfloat() {} Bigfloat(const ll &_v) { v = Bigint(_v); } Bigfloat(const Bigint &_v, int _p = 0) : v(_v), p(_p) {} void set(int _p) { if (p < _p) { v >>= (_p - p); } else { v <<= (p - _p); } p = _p; } Bigint to_int() const { if (p < 0) return v >> (-p); else return v << p; } Bigfloat &operator+=(const Bigfloat &x) { if (p > x.p) set(x.p), v += x.v; else v += x.v << (x.p - p); return *this; } Bigfloat &operator-=(const Bigfloat &x) { if (p > x.p) set(x.p), v -= x.v; else v -= x.v << (x.p - p); return *this; } Bigfloat square() { Bigfloat res = *this; res.p *= 2; res.v = res.v.square(); return res; } Bigfloat mul(ll x) { Bigfloat res = *this; res.v = v.mul(x); return res; } Bigfloat div(ll x) { Bigfloat res = *this; res.v = v.div(x); return res; } Bigfloat &operator*=(const Bigfloat &x) { p += x.p; v *= x.v; return *this; } Bigfloat &operator/=(const Bigfloat &x) { p -= x.p; v /= x.v; return *this; } Bigfloat operator+(const Bigfloat &x) const { return Bigfloat(*this) += x; } Bigfloat operator-(const Bigfloat &x) const { return Bigfloat(*this) -= x; } Bigfloat operator*(const Bigfloat &x) const { return Bigfloat(*this) *= x; } Bigfloat operator/(const Bigfloat &x) const { return Bigfloat(*this) /= x; } string to_str() { string res = v.abs().to_str(); int d = Bigint::get_D(); if (p * d > 0) res += string(p * d, '0'); else if (-p * d >= 1 and -p * d < (int)res.size()) { res = res.substr(0, (int)res.size() + p * d) + '.' + res.substr((int)res.size() + p * d); } else if (-p * d >= (int)res.size()) res = "0." + string(-p * d - (int)res.size(), '0') + res; if (v.sign) { res.insert(res.begin(), '-'); } return res; } friend ostream &operator<<(ostream &os, Bigfloat x) { os << x.to_str(); return os; } }; Bigfloat sqrt(ll n, int d) { Bigfloat res(Bigint((ll)sqrt(1LL * Bigint::get_B() * Bigint::get_B() / n)), -1), pre; int cur = 1; while (pre.v != res.v) { cur = min(cur << 1, d); pre = res; Bigfloat add = Bigfloat(1) - res.square().mul(n); add.set(-cur); res += (res * add).div(2); res.set(-cur); } return res.mul(n); } /** * @brief Big Integer(Float) */ #line 2 "library/Math/fraction.hpp" template <typename T> struct Frac { T a, b; Frac(T _a = 0) { init(_a, 1); } Frac(T _a, T _b) { init(_a, _b); } Frac &init(T _a, T _b) { // T g = GCD(_a, _b); a = _a, b = _b; if (b < 0) a = -a, b = -b; return *this; } Frac inv() const { return Frac(b, a); } Frac operator-() const { return Frac(-a, b); } Frac &operator+=(const Frac &x) { return init(a * x.b + x.a * b, b * x.b); } Frac &operator-=(const Frac &x) { return init(a * x.b - x.a * b, b * x.b); } Frac &operator*=(const Frac &x) { return init(a * x.a, b * x.b); } Frac &operator/=(const Frac &x) { return init(a * x.b, b * x.a); } Frac operator+(const Frac &x) const { return Frac(*this) += x; } Frac operator-(const Frac &x) const { return Frac(*this) -= x; } Frac operator*(const Frac &x) const { return Frac(*this) *= x; } Frac operator/(const Frac &x) const { return Frac(*this) /= x; } bool operator<(const Frac &x) const { return a * x.b < b * x.a; } bool operator>(const Frac &x) const { return x < *this; } bool operator<=(const Frac &x) const { return !(x < *this); } bool operator>=(const Frac &x) const { return !(*this < x); } bool operator==(const Frac &x) const { return (*this <= x and x <= *this); } bool operator!=(const Frac &x) const { return !(*this == x); } T GCD(T a, T b) { if (b == 0) return a; else return GCD(b, a % b); } }; template <typename T> Frac<T> between(const Frac<T> &x, const Frac<T> &y) { if (x.a < x.b and y.b < y.a) return Frac(1); else if (x.b <= x.a) { T add = floor(x.a / x.b); return between(x - add, y - add) + add; } else return between(y.inv(), x.inv()).inv(); } /** * @brief Fraction * @docs docs/fraction.md */ #line 6 "sol.cpp" FastIO io; int main() { auto yes = [&] { io.write("Yes"); exit(0); }; auto no = [&] { io.write("No"); exit(0); }; int n; io.read(n); vector<ll> a(n), b(n), c(n), d(n); io.read(a, b, c, d); using fr = Frac<Bigint>; using P = pair<fr, fr>; vector<int> ord1(n), ord2(n); iota(ALL(ord1), 0); iota(ALL(ord2), 0); sort(ALL(ord1), [&](int i, int j) { return fr(b[i], a[i]) < fr(b[j], a[j]); }); sort(ALL(ord2), [&](int i, int j) { return fr(d[i], c[i]) < fr(d[j], c[j]); }); vector<P> L({{fr(0), fr(0)}}), U = L; for (auto &i : ord1) { fr x = L.back().first + fr(a[i]); fr y = L.back().second + fr(b[i]); L.push_back({x, y}); } for (auto &i : ord2) { fr x = U.back().first + fr(c[i]); fr y = U.back().second + fr(d[i]); U.push_back({x, y}); } rep(i, 0, SZ(U)) { rep(j, 0, SZ(L) - 1) { P pq = {L[j + 1].first - L[j].first, L[j + 1].second - L[j].second}; P pr = {U[i].first - L[j].first, U[i].second - L[j].second}; if (pq.first * pr.second - pq.second * pr.first < fr(0)) no(); } } if (ord1 == ord2) yes(); // cerr << "CP3" << '\n'; fr x, y; rep(i, 0, n - 1) { auto [xi2, yi2] = L[i + 2]; auto direct = (yi2 - y) / (xi2 - x); fr mx(inf); rep(i, 0, SZ(U)) { if (x < U[i].first and U[i].first < xi2) { chmin(mx, (U[i].second - y) / (U[i].first - x)); } } if (mx == fr(inf) or direct <= mx) yes(); // pass auto [xi1, yi1] = L[i + 1]; auto nslope = (yi1 - y) / (xi1 - x); if (mx == nslope) { x = xi1, y = yi1; continue; } auto nx = (mx * x - nslope * xi1 - y + yi1) / (mx - nslope); auto ny = mx * (nx - x) + y; // io.write(nx.a.to_str(), nx.b.to_str()); x = nx, y = ny; } no(); return 0; }