結果
問題 | No.2242 Cities and Teleporters |
ユーザー | 👑 p-adic |
提出日時 | 2024-01-11 12:12:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,513 ms / 3,000 ms |
コード長 | 57,822 bytes |
コンパイル時間 | 4,068 ms |
コンパイル使用メモリ | 247,296 KB |
実行使用メモリ | 58,944 KB |
最終ジャッジ日時 | 2024-09-27 20:31:24 |
合計ジャッジ時間 | 19,693 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 979 ms
58,880 KB |
testcase_06 | AC | 955 ms
58,752 KB |
testcase_07 | AC | 955 ms
58,880 KB |
testcase_08 | AC | 1,513 ms
58,752 KB |
testcase_09 | AC | 1,059 ms
58,880 KB |
testcase_10 | AC | 422 ms
58,880 KB |
testcase_11 | AC | 316 ms
58,752 KB |
testcase_12 | AC | 312 ms
58,752 KB |
testcase_13 | AC | 472 ms
58,752 KB |
testcase_14 | AC | 792 ms
58,880 KB |
testcase_15 | AC | 456 ms
58,752 KB |
testcase_16 | AC | 639 ms
58,944 KB |
testcase_17 | AC | 1,252 ms
58,904 KB |
testcase_18 | AC | 271 ms
58,048 KB |
testcase_19 | AC | 303 ms
57,636 KB |
testcase_20 | AC | 438 ms
56,192 KB |
testcase_21 | AC | 353 ms
56,448 KB |
testcase_22 | AC | 270 ms
56,192 KB |
testcase_23 | AC | 274 ms
58,880 KB |
testcase_24 | AC | 276 ms
58,880 KB |
testcase_25 | AC | 271 ms
58,752 KB |
ソースコード
#ifndef INCLUDE_MODE #define INCLUDE_MODE // #define REACTIVE // #define USE_GETLINE #endif #ifdef INCLUDE_MAIN inline void Solve() { CIN( int , N ); vector<T3<int>> HTI( N + 1 ); FOREQ( i , 1 , N ){ CIN( ll , Hi ); HTI[i] = { Hi , 0 , i }; } FOREQ( i , 1 , N ){ CIN( ll , Ti ); get<1>( HTI[i] ) = Ti; } sort( HTI.begin() + 1 , HTI.end() ); HTI[0] = { 0 , 0 , 0 }; vector<int> f_prep( N + 1 ); f_prep[0] = 0; FOREQ( i , 1 , N ){ int& Ti = get<1>( HTI[i] ); BS2( j , 0 , N , get<0>( HTI[j] ) , Ti ); f_prep[i] = j; } IntervalMaxBIT<int> f{ 0 , move( f_prep ) }; FOREQ( i , 1 , N ){ get<0>( HTI[get<2>( HTI[i] )] ) = i; } auto f_max = [&]( const int& i = 0 ){ return max( i , f.IntervalMax( 0 , i ) ); }; // Doubling d{ move( f_max ) , N + 1 }; // MemorisationDoubling d{ f_max , N + 1 }; EnumerationDoubling d{ Id<int> , Id<int> , f_max , N + 1 }; CIN( ll , Q ); REPEAT( Q ){ CIN_ASSERT( Aq , 1 , N ); CIN_ASSERT( Bq , 1 , N ); int& iq = get<0>( HTI[Aq] ); int& jq = get<0>( HTI[Bq] ); const int& fiq = f[iq]; CERR( iq , jq , fiq ); if( fiq >= jq ){ CERR( "accessible at once:" , fiq , ">=" , jq ); COUT( 1 ); } else { if( d.IteratedComposition( fiq , N ) < jq ){ CERR( "inaccessible:" , d.IteratedComposition( fiq , N ) , "<" , jq ); COUT( -1 ); } else { BS1( n , 0 , N , d.IteratedComposition( fiq , n ) , jq ); CERR( "accessible:" , d.IteratedComposition( fiq , n ) , ">=" , jq ); COUT( ++n ); } } } } REPEAT_MAIN(1); #else // INCLUDE_MAIN #ifdef INCLUDE_SUB // グラフ用 template <typename T> Map<T,T> gF; template <typename T> inline T GetgF( const T& t ){ return gF<T>[t]; } template <typename T> vector<T> gA; template <typename T> inline T GetgA( const int& i ){ return gA<T>[i]; } template <typename PATH> vector<list<PATH> > gE; template <typename PATH> list<PATH> GetgE( const int& i ) { // list<PATH> answer{}; list<PATH> answer = gE<PATH>[i]; // VVV 入力によらない処理は以下に挿入する。 // AAA 入力によらない処理は以上に挿入する。 return answer; } // COMPAREに使用。圧縮時は削除する。 ll Naive( int N , int M , int K ) { ll answer = N + M + K; return answer; } // COMPAREに使用。圧縮時は削除する。 ll Answer( ll N , ll M , ll K ) { // START_WATCH; ll answer = N + M + K; // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } return answer; } // 圧縮時は中身だけ削除する。 inline void Experiment() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COUT( N , M , K , ":" , Naive( N , M , K ) ); // } // } // // cout << Naive( N ) << ",\n"[N==bound]; // } } // 圧縮時は中身だけ削除する。 inline void SmallTest() { // CEXPR( int , bound , 10 ); // FOREQ( N , 0 , bound ){ // FOREQ( M , 0 , bound ){ // FOREQ( K , 0 , bound ){ // COMPARE( N , M , K ); // } // } // // COMPARE( N ); // } } #define INCLUDE_MAIN #include __FILE__ #else // INCLUDE_SUB #ifdef INCLUDE_LIBRARY /* C-x 3 C-x o C-x C-fによるファイル操作用 BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt CoordinateCompress: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt DFSOnTree c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt UnionFind c:/Users/user/Documents/Programming/Utility/VLTree/UnionFindForest/compress.txt */ // VVV 常設でないライブラリは以下に挿入する。 // 2^16 = 65536 // 2^17 = 131072 // 2^18 = 262144 // 2^60 = 1152921504606846976 > 10^18 // 2^63 = 9223372036854775808 < 10^19 // FはT->U(-->T)に相当する型 template <typename T , typename F> class DoublingBody { protected: F m_f; int m_size; int m_digit; vector<vector<int> > m_doubling; inline DoublingBody( F f , const int& size , const int& digit ); public: // f^n(t)を計算する。 template <typename INT> T IteratedComposition( T t , INT n ); private: virtual T e( const int& i ) = 0; virtual int e_inv( const T& t ) = 0; }; // size未満の非負整数全体の集合をSと置く。要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // が成り立つ場合にのみサポート。 // Sの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log n)の計算量で求める。 template <typename F> class Doubling : public DoublingBody<int,F> { public: inline Doubling( F f , const int& size , const int& digit = 64 ); private: inline int e( const int& i ); inline int e_inv( const int& t ); }; // 要素数sizeのある集合Sが要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // (2) fはデフォルト引数による呼び出し可能(推論補助に用いる) // を満たす場合にのみサポート。 // そのようなSの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log size log n)の計算量で求める。 template <typename T, typename F> class MemorisationDoubling : public DoublingBody<T,F> { private: int m_length; Map<T,int> m_memory; vector<T> m_memory_inv; public: inline MemorisationDoubling( F f , const int& size , const int& digit = 64 ); private: inline T e( const int& i ); inline int e_inv( const T& t ); }; template <typename F,typename... Args> MemorisationDoubling(F,Args...) -> MemorisationDoubling<decltype(declval<F>()()),F>; // 要素数sizeのある集合Sが要件 // (1) Sの任意の要素iに対しf(i)はSの要素である。 // (2) fはデフォルト引数による呼び出し可能(推論補助に用いる) // (3) (enum_T,enum_T_inv)がSとsize未満の非負整数全体の集合の間の全単射を与える。 // を満たす場合にのみサポート。 // そのようなSの各要素tとn < 2^digitを満たす各非負整数nをわたるf^n(t)全体を // 合計O(size log n)の計算量で求める。 template <typename T , typename Enum_T , typename Enum_T_inv , typename F> class EnumerationDoubling : public DoublingBody<T,F> { private: Enum_T m_enum_T; Enum_T_inv m_enum_T_inv; public: inline EnumerationDoubling( Enum_T enum_T , Enum_T_inv enum_T_inv , F f , const int& size , const int& digit = 64 ); private: inline T e( const int& i ); inline int e_inv( const T& t ); }; template <typename Enum_T,typename Enum_T_inv,typename F,typename...Args> EnumerationDoubling(Enum_T,Enum_T_inv,F,Args...) -> EnumerationDoubling<decltype(declval<F>()()),Enum_T,Enum_T_inv,F>; template <typename T, typename F> inline DoublingBody<T,F>::DoublingBody( F f , const int& size , const int& digit ) : m_f( move( f ) ) , m_size( size ) , m_digit( digit ) , m_doubling( m_digit , vector<int>( m_size , -1 ) ) { static_assert( is_invocable_r_v<T,F,T> ); } template <typename F> inline Doubling<F>::Doubling( F f , const int& size , const int& digit ) : DoublingBody<int,F>( move( f ) , size , digit ) {} template <typename T, typename F> inline MemorisationDoubling<T,F>::MemorisationDoubling( F f , const int& size , const int& digit ) : DoublingBody<T,F>( move( f ) , size , digit ) , m_length() , m_memory() , m_memory_inv() {} template <typename T , typename Enum_T , typename Enum_T_inv , typename F> inline EnumerationDoubling<T,Enum_T,Enum_T_inv,F>::EnumerationDoubling( Enum_T enum_T , Enum_T_inv enum_T_inv , F f , const int& size , const int& digit) : DoublingBody<T,F>( move( f ) , size , digit ) , m_enum_T( move( enum_T ) ) , m_enum_T_inv( move( enum_T_inv ) ) {} template <typename T, typename F> template <typename INT> T DoublingBody<T,F>::IteratedComposition( T t , INT n ) { int i = e_inv( t ); int d = 0; while( n != 0 ){ assert( d < m_digit ); auto& doubling_d = m_doubling[d]; const int& doubling_d_i = doubling_d[i]; if( doubling_d_i == -1 ){ int j = i; if( d == 0 ){ while( doubling_d[j] == -1 ){ j = doubling_d[j] = e_inv( t = m_f( t ) ); } } else { auto& doubling_d_minus = m_doubling[d - 1]; while( doubling_d[j] == -1 ){ j = doubling_d[j] = doubling_d_minus[doubling_d_minus[j]]; } } } ( n & 1 ) == 1 ? i = doubling_d_i : i; n >>= 1; d++; } return e( i ); } template <typename F> inline int Doubling<F>::e( const int& i ) { return i; } template <typename T, typename F> inline T MemorisationDoubling<T,F>::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; } template <typename T , typename Enum_T , typename Enum_T_inv , typename F> inline T EnumerationDoubling<T,Enum_T,Enum_T_inv,F>::e( const int& i ) { using base = DoublingBody<T,F>; assert( i < base::m_size ); return m_enum_T( i ); } template <typename F> inline int Doubling<F>::e_inv( const int& t ) { return t; } template <typename T, typename F> inline int MemorisationDoubling<T,F>::e_inv( const T& t ) { if( m_memory.count( t ) == 0 ){ using base = DoublingBody<T,F>; assert( m_length < base::m_size ); m_memory_inv.push_back( t ); return m_memory[t] = m_length++; } return m_memory[t]; } template <typename T , typename Enum_T , typename Enum_T_inv , typename F> inline int EnumerationDoubling<T,Enum_T,Enum_T_inv,F>::e_inv( const T& t ) { return m_enum_T_inv( t ); } #define DC_OF_INTERVAL_MAX_BIT(MAX)TE <TY T> CL Interval ## MAX ## BIT{PU:int m_SZ;T m_init;VE<T> m_a;VE<T> m_fenwick_0;VE<T> m_fenwick_1;int m_PW;IN Interval ## MAX ## BIT(CRI SZ = 0,CO T& n = T());IN Interval ## MAX ## BIT(CO T& n,VE<T> a);IN Interval ## MAX ## BIT<T>& OP=(Interval ## MAX ## BIT<T>&& a);IN CO T& OP[](CRI i)CO;IN CO T& Get(CRI i)CO;IN CO T& LSBSegment ## MAX(CRI j,CO bool& left = true)CO;T Interval ## MAX(CRI i_start,CRI i_final)CO;VO Set(CRI i,CO T& n);IN VO Set(CO T& n,VE<T>&& a);VO Set ## MAX(CRI i,CO T& n);VO IntervalSet ## MAX(CRI i_start,CRI i_final,CO T& n);VO Initialise(CO T& n);int BinarySearch(CO T& n)CO;}; #define DF_OF_INTERVAL_MAX_BIT(MAX,INEQUALITY,OPR)TE <TY T> IN Interval ## MAX ## BIT<T>::Interval ## MAX ## BIT(CRI SZ,CO T& n):m_SZ(SZ),m_init(n),m_a(m_SZ,m_init),m_fenwick_0(m_SZ+1,m_init),m_fenwick_1(m_SZ+1,m_init),m_PW(1){WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY T> IN Interval ## MAX ## BIT<T>::Interval ## MAX ## BIT(CO T& n,VE<T> a):m_SZ(a.SZ()),m_init(n),m_a(MO(a)),m_fenwick_0(m_SZ+1),m_fenwick_1(m_SZ+1),m_PW(1){for(int i = 0;i < m_SZ;i++){int j = i + 1;T& fenwick_0i = m_fenwick_0[j];fenwick_0i = m_a[i];CO int j_llim = j -(j & -j);j--;WH(j > j_llim){CO T& tj = m_fenwick_0[j];fenwick_0i INEQUALITY tj?fenwick_0i = tj:fenwick_0i;j -=(j & -j);}}for(int i = m_SZ - 1;i >= 0;i--){int j = i + 1;T& fenwick_1i = m_fenwick_1[j];fenwick_1i = m_a[i];CO int j_ulim = min(j +(j & -j),m_SZ + 1);j++;WH(j < j_ulim){CO T& tj = m_fenwick_1[j];fenwick_1i INEQUALITY tj?fenwick_1i = tj:fenwick_1i;j +=(j & -j);}}WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY T> IN Interval ## MAX ## BIT<T>& Interval ## MAX ## BIT<T>::OP=(Interval ## MAX ## BIT<T>&& a){m_SZ = a.m_SZ;m_init = MO(a.m_init);m_a = MO(a.m_a);m_fenwick_0 = MO(m_fenwick_0);m_fenwick_1 = MO(m_fenwick_1);m_PW = a.m_PW;RE *TH;}TE <TY T> IN CO T& Interval ## MAX ## BIT<T>::OP[](CRI i)CO{RE m_a[i];}TE <TY T> IN CO T& Interval ## MAX ## BIT<T>::Get(CRI i)CO{RE m_a[i];}TE <TY T> IN CO T& Interval ## MAX ## BIT<T>::LSBSegment ## MAX(CRI j,CO bool& left)CO{assert(0 < j && j < m_SZ);RE(left?m_fenwick_0:m_fenwick_1)[j];}TE <TY T> T Interval ## MAX ## BIT<T>::Interval ## MAX(CRI i_start,CRI i_final)CO{T AN = m_init;CO int j_min = max(i_start + 1,1);CO int j_max = min(i_final + 1,m_SZ);int j = j_min;int j_next = j +(j & - j);WH(j_next <= j_max){CO T& tj = m_fenwick_1[j];AN INEQUALITY tj?AN = tj:AN;j = j_next;j_next +=(j & -j);}CO T& a_centre = m_a[j-1];(j_min <= j_max && AN INEQUALITY a_centre)?AN = a_centre:AN;j = j_max;j_next = j -(j & - j);WH(j_next >= j_min){CO T& tj = m_fenwick_0[j];AN INEQUALITY tj?AN = tj:AN;j = j_next;j_next -=(j & -j);}RE AN;}TE <TY T> VO Interval ## MAX ## BIT<T>::Set(CRI i,CO T& n){T& ai = m_a[i];if(n INEQUALITY ai){int j = i + 1;WH(j <= m_SZ){CO int lsb =(j & -j);m_fenwick_0[j] = OPR(OPR(Interval ## MAX(j - lsb,i - 1),n),Interval ## MAX(i + 1,j - 1));j += lsb;}j = i + 1;WH(j > 0){CO int lsb =(j & -j);m_fenwick_1[j] = OPR(OPR(Interval ## MAX(j - 1,i - 1),n),Interval ## MAX(i + 1,j + lsb - 2));j -= lsb;}ai = n;}else{Set ## MAX(i,n);}RE;}TE <TY T> VO Interval ## MAX ## BIT<T>::Initialise(CO T& n){m_init = n;for(int i = 0;i < m_SZ;i++){m_a[i] = m_fenwick_0[i+1] = m_fenwick_1[i+1] = m_init;}RE;}TE <TY T> IN VO Interval ## MAX ## BIT<T>::Set(CO T& n,VE<T>&& a){*TH = Interval ## MAX ## BIT<T>(n,MO(a));}TE <TY T> VO Interval ## MAX ## BIT<T>::Set ## MAX(CRI i,CO T& n){assert(i < m_SZ);T& ai = m_a[i];ai INEQUALITY n?ai = n:ai;int j = i + 1;WH(j <= m_SZ){T& tj = m_fenwick_0[j];tj INEQUALITY n?tj = n:tj;j +=(j & -j);}j = i + 1;WH(j > 0){T& tj = m_fenwick_1[j];tj INEQUALITY n?tj = n:tj;j -=(j & -j);}RE;}TE <TY T> VO Interval ## MAX ## BIT<T>::IntervalSet ## MAX(CRI i_start,CRI i_final,CO T& n){CO int j_min = max(i_start + 1,1);CO int j_max = min(i_final + 1,m_SZ);for(int i = j_min - 1;i < j_max;i++){T& ai = m_a[i];ai INEQUALITY n?ai = n:ai;}CO int j_llim = j_min -(j_min & -j_min);CO int j_ulim = min(j_max +(j_max & j_max) + 1,m_SZ+1);if(j_min <= j_max){int j = j_min;WH(j < j_ulim){if(j -(j & -j)< j_max){T& tj = m_fenwick_0[j];tj INEQUALITY n?tj = n:tj;}j++;}j = j_max;WH(j > j_llim){if(j +(j & -j)> j_min){T& tj = m_fenwick_0[j];tj INEQUALITY n?tj = n:tj;}j--;}}RE;}TE <TY T> int Interval ## MAX ## BIT<T>::BinarySearch(CO T& n)CO{int j = 0;int PW = m_PW;T temp{};T temp_next{};WH(PW > 0){int j_next = j | PW;if(j_next < m_SZ){CO T& fenwick_j_next = m_fenwick_0[j_next];temp_next INEQUALITY fenwick_j_next?temp_next = fenwick_j_next:temp;if(temp_next INEQUALITY n){temp = temp_next;j = j_next;}else{temp_next = temp;}}PW >>= 1;}RE j;} DC_OF_INTERVAL_MAX_BIT(Max);DC_OF_INTERVAL_MAX_BIT(Min); DF_OF_INTERVAL_MAX_BIT(Max,<,max);DF_OF_INTERVAL_MAX_BIT(Min,>,min); // AAA 常設でないライブラリは以上に挿入する。 #define INCLUDE_SUB #include __FILE__ #else // INCLUDE_LIBRARY #ifdef DEBUG #define _GLIBCXX_DEBUG #define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); if( exec_mode == sample_debug_mode || exec_mode == submission_debug_mode || exec_mode == library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){ SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL( test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); } #define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX ) #define SOLVE_ONLY #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL #endif #ifdef REACTIVE #define ENDL endl #else #define ENDL "\n" #endif #ifdef USE_GETLINE #define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); } #define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ ) #else #define SET_LL( A ) cin >> A #define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define CIN_A( LL , A , N ) vector<LL> A( N ); SET_A( A , N ); #endif #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template <typename INT> using T2 = pair<INT,INT>; template <typename INT> using T3 = tuple<INT,INT,INT>; template <typename INT> using T4 = tuple<INT,INT,INT,INT>; using path = pair<int,ll>; #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define TYPE_OF( VAR ) decay_t<decltype( VAR )> #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return #define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__ , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ return; } // 入出力用 template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; } template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; } template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template <class Traits , typename Arg> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const vector<Arg>& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; } template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os << arg; } template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用 template <typename T> constexpr T PositiveBaseResidue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } template <typename T> constexpr T Residue( const T& a , const T& p ){ return PositiveBaseResidue( a , p < 0 ? -p : p ); } template <typename T> constexpr T PositiveBaseQuotient( const T& a , const T& p ){ return ( a - PositiveBaseResidue( a , p ) ) / p; } template <typename T> constexpr T Quotient( const T& a , const T& p ){ return p < 0 ? PositiveBaseQuotient( -a , -p ) : PositiveBaseQuotient( a , p ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ ll ANSWER[CONSTEXPR_LENGTH]; \ ll ANSWER_INV[CONSTEXPR_LENGTH]; \ ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索用 // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CONST_TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CONST_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same<TYPE_OF( CONST_TARGET ),uint>::value && ! is_same<TYPE_OF( CONST_TARGET ),ull>::value ); \ ll ANSWER = MINIMUM; \ { \ ll L_BS = MINIMUM; \ ll U_BS = MAXIMUM; \ ANSWER = UPDATE_ANSWER; \ ll EXPRESSION_BS; \ const ll CONST_TARGET_BS = ( CONST_TARGET ); \ ll DIFFERENCE_BS; \ while( L_BS < U_BS ){ \ DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CONST_TARGET_BS; \ CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "-" , #CONST_TARGET , "=" , EXPRESSION_BS , "-" , CONST_TARGET_BS , "=" , DIFFERENCE_BS ); \ if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \ U_BS = UPDATE_U; \ } else { \ L_BS = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ if( L_BS > U_BS ){ \ CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ ANSWER = MAXIMUM + 1; \ } else { \ CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \ CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \ CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \ EXPRESSION_BS = ( EXPRESSION ); \ CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CONST_TARGET_BS ? ">" : EXPRESSION_BS < CONST_TARGET_BS ? "<" : "=" ) , CONST_TARGET_BS ); \ if( EXPRESSION_BS DESIRED_INEQUALITY CONST_TARGET_BS ){ \ CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \ } else { \ CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \ CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ ANSWER = MAXIMUM + 1; \ } \ } \ } \ // 単調増加の時にEXPRESSION >= CONST_TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , >= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \ // 単調増加の時にEXPRESSION <= CONST_TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , > , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \ // 単調減少の時にEXPRESSION >= CONST_TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CONST_TARGET , < , ANSWER - 1 , ANSWER , ( L_BS + 1 + U_BS ) / 2 ) \ // 単調減少の時にEXPRESSION <= CONST_TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CONST_TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CONST_TARGET , <= , ANSWER , ANSWER + 1 , ( L_BS + U_BS ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); } // データ構造用 template <typename T , template <typename...> typename V> inline V<T> operator+( const V<T>& a0 , const V<T>& a1 ) { if( a0.empty() ){ return a1; } if( a1.empty() ){ return a0; } assert( a0.size() == a1.size() ); V<T> answer{}; for( auto itr0 = a0.begin() , itr1 = a1.begin() , end0 = a0.end(); itr0 != end0 ; itr0++ , itr1++ ){ answer.push_back( *itr0 + *itr1 ); } return answer; } template <typename T , typename U> inline pair<T,U> operator+( const pair<T,U>& t0 , const pair<T,U>& t1 ) { return { t0.first + t1.first , t0.second + t1.second }; } template <typename T , typename U , typename V> inline tuple<T,U,V> operator+( const tuple<T,U,V>& t0 , const tuple<T,U,V>& t1 ) { return { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) }; } template <typename T , typename U , typename V , typename W> inline tuple<T,U,V,W> operator+( const tuple<T,U,V,W>& t0 , const tuple<T,U,V,W>& t1 ) { return { get<0>( t0 ) + get<0>( t1 ) , get<1>( t0 ) + get<1>( t1 ) , get<2>( t0 ) + get<2>( t1 ) , get<3>( t0 ) + get<3>( t1 ) }; } template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; } template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; } template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template <typename T> inline const T& Zero() { static const T z{}; return z; } template <typename T> inline const T& One() { static const T o = 1; return o; }\ template <typename T> inline T AddInv( const T& t ) { return -t; } template <typename T> inline T Id( const T& v ) { return v; } template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; } template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; } // グリッド問題用 int H , W , H_minus , W_minus , HW; vector<vector<bool> > non_wall; inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}} inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}} inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.' , const char& unwalkable = '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // デバッグ用 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( int& exec_mode , const bool& use_getline ); inline void Solve(); inline void Experiment(); inline void SmallTest(); inline void RandomTest(); ll GetRand( const ll& Rand_min , const ll& Rand_max ); int exec_mode; CEXPR( int , solve_mode , 0 ); CEXPR( int , sample_debug_mode , 1 ); CEXPR( int , submission_debug_mode , 2 ); CEXPR( int , library_search_mode , 3 ); CEXPR( int , experiment_mode , 4 ); CEXPR( int , small_test_mode , 5 ); CEXPR( int , random_test_mode , 6 ); #ifdef USE_GETLINE CEXPR( bool , use_getline , true ); #else CEXPR( bool , use_getline , false ); #endif #else ll GetRand( const ll& Rand_min , const ll& Rand_max ) { ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; } #endif // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& // VVV 常設ライブラリは以下に挿入する。 // Map // c:/Users/user/Documents/Programming/Mathematics/Function/Map CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;}; TE <TY T , TY U>US Map = conditional_t<is_constructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,void>>; // ConstexprModulo // c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/a.hpp CEXPR(uint,P,998244353);TE <uint M,TY INT> CE INT& RS(INT& n)NE{RE n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n %= M;}TE <uint M> CE uint& RS(uint& n)NE{RE n %= M;}TE <uint M> CE ull& RS(ull& n)NE{RE n %= M;}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -= n_uq;}TE <> CE ull& RS<P,ull>(ull& n)NE{CE CO ull Pull = P;CE CO ull Pull2 =(Pull - 1)*(Pull - 1);RE RSP(n > Pull2?n -= Pull2:n);}TE <uint M,TY INT> CE INT RS(INT&& n)NE{RE MO(RS<M>(n));}TE <uint M,TY INT> CE INT RS(CO INT& n)NE{RE RS<M>(INT(n));} #define SFINAE_FOR_MOD(DEFAULT)TY T,enable_if_t<is_constructible<uint,decay_t<T> >::value>* DEFAULT #define DC_OF_CM_FOR_MOD(FUNC)CE bool OP FUNC(CO Mod<M>& n)CO NE #define DC_OF_AR_FOR_MOD(FUNC)CE Mod<M> OP FUNC(CO Mod<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MOD(FUNC)TE <uint M> CE bool Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MOD(FUNC,FORMULA)TE <uint M> CE Mod<M> Mod<M>::OP FUNC(CO Mod<M>& n)CO NE{RE MO(Mod<M>(*TH)FUNC ## = n);}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M> Mod<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> CE Mod<M> OP FUNC(T&& n0,CO Mod<M>& n1)NE{RE MO(Mod<M>(forward<T>(n0))FUNC ## = n1);} TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(CO T& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T& n)NE;TE <SFINAE_FOR_MOD(= nullptr)> CE Mod(T&& n)NE;CE Mod<M>& OP=(CO Mod<M>& n)NE;CE Mod<M>& OP=(Mod<M>&& n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(CO Mod<M>& n);CE Mod<M>& OP<<=(int n)NE;CE Mod<M>& OP>>=(int n)NE;CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+);DC_OF_AR_FOR_MOD(-);DC_OF_AR_FOR_MOD(*);DC_OF_AR_FOR_MOD(/);CE Mod<M> OP<<(int n)CO NE;CE Mod<M> OP>>(int n)CO NE;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;CE Mod<M>& Double()NE;CE Mod<M>& Halve()NE;IN Mod<M>& Invert();TE <TY T> CE Mod<M>& PositivePW(T&& EX)NE;TE <TY T> CE Mod<M>& NonNegativePW(T&& EX)NE;TE <TY T> CE Mod<M>& PW(T&& EX);CE VO swap(Mod<M>& n)NE;CE CRUI RP()CO NE;ST CE Mod<M> DeRP(CRUI n)NE;ST CE uint& Normalise(uint& n)NE;ST IN CO Mod<M>& Inverse(CRUI n)NE;ST IN CO Mod<M>& Factorial(CRUI n)NE;ST IN CO Mod<M>& FactorialInverse(CRUI n)NE;ST IN Mod<M> Combination(CRUI n,CRUI i)NE;ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;}; #define SFINAE_FOR_MN(DEFAULT)TY T,enable_if_t<is_constructible<Mod<M>,decay_t<T> >::value>* DEFAULT #define DC_OF_AR_FOR_MN(FUNC)IN MN<M> OP FUNC(CO MN<M>& n)CO NE;TE <SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n)CO NE; #define DF_OF_CM_FOR_MN(FUNC)TE <uint M> IN bool MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE m_n FUNC n.m_n;} #define DF_OF_AR_FOR_MN(FUNC,FORMULA)TE <uint M> IN MN<M> MN<M>::OP FUNC(CO MN<M>& n)CO NE{RE MO(MN<M>(*TH)FUNC ## = n);}TE <uint M> TE <SFINAE_FOR_MOD()> IN MN<M> MN<M>::OP FUNC(T&& n)CO NE{RE FORMULA;}TE <uint M,SFINAE_FOR_MOD(= nullptr)> IN MN<M> OP FUNC(T&& n0,CO MN<M>& n1)NE{RE MO(MN<M>(forward<T>(n0))FUNC ## = n1);} TE <uint M>CL MN:PU Mod<M>{PU:CE MN()NE;CE MN(CO MN<M>& n)NE;CE MN(MN<M>& n)NE;CE MN(MN<M>&& n)NE;TE <SFINAE_FOR_MN(= nullptr)> CE MN(CO T& n)NE;TE <SFINAE_FOR_MN(= nullptr)> CE MN(T&& n)NE;CE MN<M>& OP=(CO MN<M>& n)NE;CE MN<M>& OP=(MN<M>&& n)NE;CE MN<M>& OP+=(CO MN<M>& n)NE;CE MN<M>& OP-=(CO MN<M>& n)NE;CE MN<M>& OP*=(CO MN<M>& n)NE;IN MN<M>& OP/=(CO MN<M>& n);CE MN<M>& OP<<=(int n)NE;CE MN<M>& OP>>=(int n)NE;CE MN<M>& OP++()NE;CE MN<M> OP++(int)NE;CE MN<M>& OP--()NE;CE MN<M> OP--(int)NE;DC_OF_AR_FOR_MN(+);DC_OF_AR_FOR_MN(-);DC_OF_AR_FOR_MN(*);DC_OF_AR_FOR_MN(/);CE MN<M> OP<<(int n)CO NE;CE MN<M> OP>>(int n)CO NE;CE MN<M> OP-()CO NE;CE MN<M>& SignInvert()NE;CE MN<M>& Double()NE;CE MN<M>& Halve()NE;CE MN<M>& Invert();TE <TY T> CE MN<M>& PositivePW(T&& EX)NE;TE <TY T> CE MN<M>& NonNegativePW(T&& EX)NE;TE <TY T> CE MN<M>& PW(T&& EX);CE uint RP()CO NE;CE Mod<M> Reduce()CO NE;ST CE MN<M> DeRP(CRUI n)NE;ST IN CO MN<M>& Formise(CRUI n)NE;ST IN CO MN<M>& Inverse(CRUI n)NE;ST IN CO MN<M>& Factorial(CRUI n)NE;ST IN CO MN<M>& FactorialInverse(CRUI n)NE;ST IN MN<M> Combination(CRUI n,CRUI i)NE;ST IN CO MN<M>& zero()NE;ST IN CO MN<M>& one()NE;ST CE uint Form(CRUI n)NE;ST CE ull& Reduction(ull& n)NE;ST CE ull& ReducedMU(ull& n,CRUI m)NE;ST CE uint MU(CRUI n0,CRUI n1)NE;ST CE uint BaseSquareTruncation(uint& n)NE;TE <TY T> CE MN<M>& Ref(T&& n)NE;};TE <uint M> CE MN<M> Twice(CO MN<M>& n)NE;TE <uint M> CE MN<M> Half(CO MN<M>& n)NE;TE <uint M> CE MN<M> Inverse(CO MN<M>& n);TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX);TE <TY T> CE MN<2> PW(CO MN<2>& n,CO T& p);TE <TY T> CE T Square(CO T& t);TE <> CE MN<2> Square<MN<2> >(CO MN<2>& t);TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE;TE <uint M> IN string to_string(CO MN<M>& n)NE;TE<uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,MN<M>& n);TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n); TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO bool g_even =((M & 1)== 0);ST CE CO uint g_memory_bound = 1000000;ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE ull MNBasePW(ull&& EX)NE;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint g_M_minus_2_neg = 2 - M;ST CE CO int g_MN_digit = 32;ST CE CO ull g_MN_base = ull(1)<< g_MN_digit;ST CE CO uint g_MN_base_minus = uint(g_MN_base - 1);ST CE CO uint g_MN_digit_half =(g_MN_digit + 1)>> 1;ST CE CO uint g_MN_base_sqrt_minus =(1 << g_MN_digit_half)- 1;ST CE CO uint g_MN_M_neg_inverse = uint((g_MN_base - MNBasePW((ull(1)<<(g_MN_digit - 1))- 1))& g_MN_base_minus);ST CE CO uint g_MN_base_mod = uint(g_MN_base % M);ST CE CO uint g_MN_base_square_mod = uint(((g_MN_base % M)*(g_MN_base % M))% M);};TE <uint M> CE ull COantsForMod<M>::MNBasePW(ull&& EX)NE{ull prod = 1;ull PW = M;WH(EX != 0){(EX & 1)== 1?(prod *= PW)&= g_MN_base_minus:prod;EX >>= 1;(PW *= PW)&= g_MN_base_minus;}RE prod;} US MP = Mod<P>;US MNP = MN<P>;TE <uint M> CE uint MN<M>::Form(CRUI n)NE{ull n_copy = n;RE uint(MO(Reduction(n_copy *= COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE ull& MN<M>::Reduction(ull& n)NE{ull n_sub = n & COantsForMod<M>::g_MN_base_minus;RE((n +=((n_sub *= COantsForMod<M>::g_MN_M_neg_inverse)&= COantsForMod<M>::g_MN_base_minus)*= M)>>= COantsForMod<M>::g_MN_digit)< M?n:n -= M;}TE <uint M> CE ull& MN<M>::ReducedMU(ull& n,CRUI m)NE{RE Reduction(n *= m);}TE <uint M> CE uint MN<M>::MU(CRUI n0,CRUI n1)NE{ull n0_copy = n0;RE uint(MO(ReducedMU(ReducedMU(n0_copy,n1),COantsForMod<M>::g_MN_base_square_mod)));}TE <uint M> CE uint MN<M>::BaseSquareTruncation(uint& n)NE{CO uint n_u = n >> COantsForMod<M>::g_MN_digit_half;n &= COantsForMod<M>::g_MN_base_sqrt_minus;RE n_u;}TE <uint M> CE MN<M>::MN()NE:Mod<M>(){static_assert(! COantsForMod<M>::g_even);}TE <uint M> CE MN<M>::MN(CO MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>& n)NE:Mod<M>(n){}TE <uint M> CE MN<M>::MN(MN<M>&& n)NE:Mod<M>(MO(n)){}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(CO T& n)NE:Mod<M>(n){static_assert(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M>::m_n);}TE <uint M> TE <SFINAE_FOR_MN()> CE MN<M>::MN(T&& n)NE:Mod<M>(forward<T>(n)){static_assert(! COantsForMod<M>::g_even);Mod<M>::m_n = Form(Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::OP=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP=(n));}TE <uint M> CE MN<M>& MN<M>::OP=(MN<M>&& n)NE{RE Ref(Mod<M>::OP=(MO(n)));}TE <uint M> CE MN<M>& MN<M>::OP+=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP+=(n));}TE <uint M> CE MN<M>& MN<M>::OP-=(CO MN<M>& n)NE{RE Ref(Mod<M>::OP-=(n));}TE <uint M> CE MN<M>& MN<M>::OP*=(CO MN<M>& n)NE{ull m_n_copy = Mod<M>::m_n;RE Ref(Mod<M>::m_n = MO(ReducedMU(m_n_copy,n.m_n)));}TE <uint M> IN MN<M>& MN<M>::OP/=(CO MN<M>& n){RE OP*=(MN<M>(n).Invert());}TE <uint M> CE MN<M>& MN<M>::OP<<=(int n)NE{RE Ref(Mod<M>::OP<<=(n));}TE <uint M> CE MN<M>& MN<M>::OP>>=(int n)NE{RE Ref(Mod<M>::OP>>=(n));}TE <uint M> CE MN<M>& MN<M>::OP++()NE{RE Ref(Mod<M>::Normalise(Mod<M>::m_n += COantsForMod<M>::g_MN_base_mod));}TE <uint M> CE MN<M> MN<M>::OP++(int)NE{MN<M> n{*TH};OP++();RE n;}TE <uint M> CE MN<M>& MN<M>::OP--()NE{RE Ref(Mod<M>::m_n < COantsForMod<M>::g_MN_base_mod?((Mod<M>::m_n += M)-= COantsForMod<M>::g_MN_base_mod):Mod<M>::m_n -= COantsForMod<M>::g_MN_base_mod);}TE <uint M> CE MN<M> MN<M>::OP--(int)NE{MN<M> n{*TH};OP--();RE n;}DF_OF_AR_FOR_MN(+,MN<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MN(-,MN<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MN(*,MN<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MN(/,MN<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE MN<M> MN<M>::OP<<(int n)CO NE{RE MO(MN<M>(*TH)<<= n);}TE <uint M> CE MN<M> MN<M>::OP>>(int n)CO NE{RE MO(MN<M>(*TH)>>= n);}TE <uint M> CE MN<M> MN<M>::OP-()CO NE{RE MO(MN<M>(*TH).SignInvert());}TE <uint M> CE MN<M>& MN<M>::SignInvert()NE{RE Ref(Mod<M>::m_n > 0?Mod<M>::m_n = M - Mod<M>::m_n:Mod<M>::m_n);}TE <uint M> CE MN<M>& MN<M>::Double()NE{RE Ref(Mod<M>::Double());}TE <uint M> CE MN<M>& MN<M>::Halve()NE{RE Ref(Mod<M>::Halve());}TE <uint M> CE MN<M>& MN<M>::Invert(){assert(Mod<M>::m_n > 0);RE PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PositivePW(T&& EX)NE{MN<M> PW{*TH};(--EX)%= COantsForMod<M>::g_M_minus_2;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(Mod<M>::m_n = COantsForMod<M>::g_MN_base_mod):PositivePW(forward<T>(EX));}TE <uint M> TE <TY T> CE MN<M>& MN<M>::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX));}TE <uint M> CE uint MN<M>::RP()CO NE{ull m_n_copy = Mod<M>::m_n;RE MO(Reduction(m_n_copy));}TE <uint M> CE Mod<M> MN<M>::Reduce()CO NE{ull m_n_copy = Mod<M>::m_n;RE Mod<M>::DeRP(MO(Reduction(m_n_copy)));}TE <uint M> CE MN<M> MN<M>::DeRP(CRUI n)NE{RE MN<M>(Mod<M>::DeRP(n));}TE <uint M> IN CO MN<M>& MN<M>::Formise(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = DeRP(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Inverse(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>(Mod<M>::Inverse(LE_curr));LE_curr++;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::Factorial(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M> val_last{one()};WH(LE_curr <= n){memory[LE_curr++] = val_curr *= ++val_last;}RE memory[n];}TE <uint M> IN CO MN<M>& MN<M>::FactorialInverse(CRUI n)NE{ST MN<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;ST MN<M> val_curr{one()};ST MN<M> val_last{one()};WH(LE_curr <= n){memory[LE_curr] = val_curr *= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN MN<M> MN<M>::Combination(CRUI n,CRUI i)NE{RE i <= n?Factorial(n)*FactorialInverse(i)*FactorialInverse(n - i):zero();}TE <uint M> IN CO MN<M>& MN<M>::zero()NE{ST CE CO MN<M> z{};RE z;}TE <uint M> IN CO MN<M>& MN<M>::one()NE{ST CE CO MN<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE MN<M>& MN<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE MN<M> Twice(CO MN<M>& n)NE{RE MO(MN<M>(n).Double());}TE <uint M> CE MN<M> Half(CO MN<M>& n)NE{RE MO(MN<M>(n).Halve());}TE <uint M> CE MN<M> Inverse(CO MN<M>& n){RE MO(MN<M>(n).Invert());}TE <uint M,TY T> CE MN<M> PW(MN<M> n,T EX){RE MO(n.PW(EX));}TE <uint M> CE VO swap(MN<M>& n0,MN<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO MN<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,MN<M>& n){ll m;is >> m;n = m;RE is;}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO MN<M>& n){RE os << n.RP();} TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(CO T& n)NE:m_n(RS<M>(n)){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T& n)NE:m_n(RS<M>(decay_t<T>(n))){}TE <uint M> TE <SFINAE_FOR_MOD()> CE Mod<M>::Mod(T&& n)NE:m_n(RS<M>(forward<T>(n))){}TE <uint M> CE Mod<M>& Mod<M>::OP=(CO Mod<M>& n)NE{RE Ref(m_n = n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M>&& n)NE{RE Ref(m_n = MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = COantsForMod<M>::g_even?RS<M>(ull(m_n)* n.m_n):MN<M>::MU(m_n,n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(CO Mod<M>& n){RE OP*=(Mod<M>(n).Invert());}TE <uint M> CE Mod<M>& Mod<M>::OP<<=(int n)NE{WH(n-- > 0){Normalise(m_n <<= 1);}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP>>=(int n)NE{WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>= 1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,Mod<M>(forward<T>(n))+= *TH);DF_OF_AR_FOR_MOD(-,Mod<M>(forward<T>(n)).SignInvert()+= *TH);DF_OF_AR_FOR_MOD(*,Mod<M>(forward<T>(n))*= *TH);DF_OF_AR_FOR_MOD(/,Mod<M>(forward<T>(n)).Invert()*= *TH);TE <uint M> CE Mod<M> Mod<M>::OP<<(int n)CO NE{RE MO(Mod<M>(*TH)<<= n);}TE <uint M> CE Mod<M> Mod<M>::OP>>(int n)CO NE{RE MO(Mod<M>(*TH)>>= n);}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n = M - m_n:m_n);}TE <uint M> CE Mod<M>& Mod<M>::Double()NE{RE Ref(Normalise(m_n <<= 1));}TE <uint M> CE Mod<M>& Mod<M>::Halve()NE{RE Ref(((m_n & 1)== 0?m_n:m_n += M)>>= 1);}TE <uint M> IN Mod<M>& Mod<M>::Invert(){assert(m_n > 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE <> IN Mod<2>& Mod<2>::Invert(){assert(m_n > 0);RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PositivePW(T&& EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?OP*=(PW):*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <> TE <TY T> CE Mod<2>& Mod<2>::PositivePW(T&& EX)NE{RE *TH;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::NonNegativePW(T&& EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(forward<T>(EX)));}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::PW(T&& EX){bool neg = EX < 0;assert(!(neg && Mod<M>::m_n == 0));RE neg?PositivePW(forward<T>(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(forward<T>(EX));}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - MN<M>::MU(memory[M % LE_curr].m_n,M / LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>::Factorial(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CRUI n)NE{ST Mod<M> memory[COantsForMod<M>::g_memory_LE] ={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr] = MN<M>::FactorialInverse(LE_curr).Reduce();LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CRUI n,CRUI i)NE{RE MN<M>::Combination(n,i).Reduce();}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> CE CRUI Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CRUI n)NE{Mod<M> n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{DeRP(1)};RE o;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE Mod<M> Twice(CO Mod<M>& n)NE{RE MO(Mod<M>(n).Double());}TE <uint M> CE Mod<M> Half(CO Mod<M>& n)NE{RE MO(Mod<M>(n).Halve());}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_COrexpr(CRUI n)NE{RE MO(Mod<M>::DeRP(RS<M>(n)).NonNegativePW(M - 2));}TE <uint M,TY T> CE Mod<M> PW(Mod<M> n,T EX){RE MO(n.PW(EX));}TE <TY T>CE Mod<2> PW(Mod<2> n,const T& p){RE p == 0?Mod<2>::one():move(n);}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + MZ";}TE<uint M,CL Traits> IN basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE<uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();} // IntervalAddBIT // c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/a.hpp TE <TY T>CL BIT{PU:int m_SZ;VE<T> m_fenwick;int m_PW;IN BIT(CRI SZ = 0);BIT(CO VE<T>& a);IN BIT<T>& OP=(BIT<T>&& a);IN T Get(CRI i)CO;IN VO Set(CRI i,CO T& n);IN VO Set(CO VE<T>& a);IN VO Initialise(CRI SZ = 0);IN BIT<T>& OP+=(CO VE<T>& a);VO Add(CRI i,CO T& n);IN CO T& LSBSegmentSum(CRI j)CO;T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO;int BinarySearch(CO T& n)CO;IN int BinarySearch(CRI i_start,CO T& n)CO;}; TE <TY T> IN BIT<T>::BIT(CRI SZ):m_SZ(SZ),m_fenwick(m_SZ+1),m_PW(1){static_assert(! is_same<T,int>::value);WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY T>BIT<T>::BIT(CO VE<T>& a):BIT(a.SZ()){for(int j = 1;j <= m_SZ;j++){T& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];int i_lim = j -(j & -j);WH(i > i_lim){fenwick_j += m_fenwick[i];i -=(i & -i);}}}TE <TY T> IN BIT<T>& BIT<T>::OP=(BIT<T>&& a){m_SZ = a.m_SZ;m_fenwick = MO(a.m_fenwick);m_PW = a.m_PW;RE *TH;}TE <TY T> IN T BIT<T>::Get(CRI i)CO{RE IntervalSum(i,i);}TE <TY T> IN VO BIT<T>::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE <TY T> IN VO BIT<T>::Set(CO VE<T>& a){*TH = BIT<T>{a};}TE <TY T> IN VO BIT<T>::Initialise(CRI SZ){*TH = BIT<T>(SZ);}TE <TY T> IN BIT<T>& BIT<T>::OP+=(CO VE<T>&a){ BIT<T> a_copy{ a }; assert(m_SZ == a.m_SZ);for(int i = 1;i <= m_SZ;i++){m_fenwick[i] += a.m_fenwick[i];}RE *TH;}TE <TY T>VO BIT<T>::Add(CRI i,CO T& n){int j = i + 1;WH(j <= m_SZ){m_fenwick[j] += n;j +=(j & -j);}RE;}TE <TY T> IN CO T& BIT<T>::LSBSegmentSum(CRI j)CO{assert(0 < j && j <= m_SZ);RE m_fenwick[j];}TE <TY T>T BIT<T>::InitialSegmentSum(CRI i_final)CO{T sum = 0;int j =(i_final < m_SZ?i_final:m_SZ - 1)+ 1;WH(j > 0){sum += m_fenwick[j];j -= j & -j;}RE sum;}TE <TY T> IN T BIT<T>::IntervalSum(CRI i_start,CRI i_final)CO{RE InitialSegmentSum(i_final)- InitialSegmentSum(i_start - 1);}TE <TY T>int BIT<T>::BinarySearch(CO T& n)CO{int PW = m_PW;int j = 0;T sum{};T sum_next{};WH(PW > 0){int j_next = j | PW;if(j_next < m_SZ){sum_next += m_fenwick[j_next];if(sum_next < n){sum = sum_next;j = j_next;}else{sum_next = sum;}}PW >>= 1;}RE j;}TE <TY T> IN int BIT<T>::BinarySearch(CRI i_start,CO T& n)CO{RE max(i_start,BinarySearch(InitialSegmentSum(i_start)+ n));} TE <TY T>CL IntervalAddBIT{PU:BIT<T> m_bit_0;BIT<T> m_bit_1;IN IntervalAddBIT(CRI SZ = 0);IN IntervalAddBIT(CO VE<T>& a);IN IntervalAddBIT<T>& OP=(IntervalAddBIT<T>&& a);IN T Get(CRI i)CO;IN VO Set(CRI i,CO T& n);IN VO Set(CO VE<T>& a);IN VO Initialise(CRI SZ = 0);IN IntervalAddBIT<T>& OP+=(CO VE<T>& a);IN VO Add(CRI i,CO T& n);IN VO IntervalAdd(CRI i_start,CRI i_final,CO T& n);IN T InitialSegmentSum(CRI i_final)CO;IN T IntervalSum(CRI i_start,CRI i_final)CO;}; TE <TY T> IN IntervalAddBIT<T>::IntervalAddBIT(CRI SZ):m_bit_0(SZ),m_bit_1(SZ){}TE <TY T> IN IntervalAddBIT<T>::IntervalAddBIT(CO VE<T>& a):m_bit_0(),m_bit_1(){CO int SZ = a.SZ();VE<T> diff(SZ);diff[0]= a[0];for(int i = 1;i < SZ;i++){diff[i] = a[i] - a[i-1];}m_bit_0.Set(diff);for(int i = 1;i < SZ;i++){(diff[i]*= 1 - i)-= a[i];}m_bit_1.Set(diff);}TE <TY T> IN IntervalAddBIT<T>& IntervalAddBIT<T>::OP=(IntervalAddBIT<T>&& a){m_bit_0 = MO(a.m_bit_0);m_bit_1 = MO(a.m_bit_1);}TE <TY T> IN T IntervalAddBIT<T>::Get(CRI i)CO{RE IntervalSum(i,i);}TE <TY T> IN VO IntervalAddBIT<T>::Set(CRI i,CO T& n){Add(i,n - IntervalSum(i,i));}TE <TY T> IN VO IntervalAddBIT<T>::Set(CO VE<T>& a){*TH = IntervalAddBIT<T>(a);}TE <TY T> IN VO IntervalAddBIT<T>::Initialise(CO int& SZ){m_bit_0.Initialise(SZ);m_bit_1.Initialise(SZ);}TE <TY T> IN IntervalAddBIT<T>& IntervalAddBIT<T>::OP+=(CO VE<T>& a){IntervalAddBIT<T> a_copy{a};CO int SZ = a.SZ();for(int i = 1;i < SZ;i++){m_bit_0[i] += a_copy.m_bit_0[i];m_bit_1[i] += a_copy.m_bit_1[i];}RE *TH;}TE <TY T> IN VO IntervalAddBIT<T>::Add(CRI i,CO T& n){IntervalAdd(i,i,n);}TE <TY T> IN VO IntervalAddBIT<T>::IntervalAdd(CRI i_start,CRI i_final,CO T& n){m_bit_0.Add(i_start,-(i_start - 1)* n);m_bit_0.Add(i_final + 1,i_final * n);m_bit_1.Add(i_start,n);m_bit_1.Add(i_final + 1,- n);}TE <TY T> IN T IntervalAddBIT<T>::InitialSegmentSum(CRI i_final)CO{RE m_bit_0.InitialSegmentSum(i_final)+ i_final * m_bit_1.InitialSegmentSum(i_final);}TE <TY T> IN T IntervalAddBIT<T>::IntervalSum(CRI i_start,CRI i_final)CO{RE InitialSegmentSum(i_final)- InitialSegmentSum(i_start - 1);} // AAA 常設ライブラリは以上に挿入する。 #define INCLUDE_LIBRARY #include __FILE__ #endif // INCLUDE_LIBRARY #endif // INCLUDE_SUB #endif // INCLUDE_MAIN