結果

問題 No.2604 Initial Motion
ユーザー tokusakuraitokusakurai
提出日時 2024-01-12 22:38:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 998 ms / 3,000 ms
コード長 9,111 bytes
コンパイル時間 2,901 ms
コンパイル使用メモリ 220,540 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-27 23:20:32
合計ジャッジ時間 21,465 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 27 ms
5,376 KB
testcase_04 AC 27 ms
5,376 KB
testcase_05 AC 27 ms
5,376 KB
testcase_06 AC 27 ms
5,376 KB
testcase_07 AC 27 ms
5,376 KB
testcase_08 AC 26 ms
5,376 KB
testcase_09 AC 27 ms
5,376 KB
testcase_10 AC 27 ms
5,376 KB
testcase_11 AC 27 ms
5,376 KB
testcase_12 AC 27 ms
5,376 KB
testcase_13 AC 851 ms
5,376 KB
testcase_14 AC 600 ms
5,376 KB
testcase_15 AC 313 ms
5,376 KB
testcase_16 AC 787 ms
5,376 KB
testcase_17 AC 998 ms
6,940 KB
testcase_18 AC 953 ms
6,940 KB
testcase_19 AC 918 ms
6,940 KB
testcase_20 AC 752 ms
6,944 KB
testcase_21 AC 621 ms
6,944 KB
testcase_22 AC 918 ms
6,940 KB
testcase_23 AC 661 ms
6,940 KB
testcase_24 AC 829 ms
6,944 KB
testcase_25 AC 941 ms
6,940 KB
testcase_26 AC 715 ms
6,940 KB
testcase_27 AC 529 ms
6,944 KB
testcase_28 AC 669 ms
6,940 KB
testcase_29 AC 833 ms
6,940 KB
testcase_30 AC 570 ms
6,948 KB
testcase_31 AC 718 ms
6,940 KB
testcase_32 AC 660 ms
6,944 KB
testcase_33 AC 135 ms
6,944 KB
testcase_34 AC 425 ms
6,940 KB
testcase_35 AC 434 ms
6,944 KB
testcase_36 AC 416 ms
6,944 KB
testcase_37 AC 186 ms
6,944 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 2 ms
6,940 KB
testcase_40 AC 276 ms
6,940 KB
testcase_41 AC 275 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

template <typename F, typename T = F>
struct Primal_Dual {
    struct edge {
        int to;
        F cap;
        T cost;
        int rev;
        edge(int to, F cap, T cost, int rev) : to(to), cap(cap), cost(cost), rev(rev) {}
    };

    vector<vector<edge>> es;
    vector<T> d, h;
    vector<int> pre_v, pre_e;
    bool negative = false;
    const F zero_F, INF_F;
    const T zero_T, INF_T;
    const int n;

    Primal_Dual(int n, F zero_F = 0, F INF_F = numeric_limits<F>::max() / 2, T zero_T = 0, T INF_T = numeric_limits<T>::max() / 2) : es(n), d(n), h(n), pre_v(n), pre_e(n), zero_F(zero_F), INF_F(INF_F), zero_T(zero_T), INF_T(INF_T), n(n) {}

    void add_edge(int from, int to, F cap, T cost) {
        es[from].emplace_back(to, cap, cost, (int)es[to].size());
        es[to].emplace_back(from, zero_F, -cost, (int)es[from].size() - 1);
        if (cost < zero_T) negative = true;
    }

    void bellman_ford(int s) {
        fill(begin(h), end(h), INF_T);
        h[s] = zero_T;
        while (true) {
            bool update = false;
            for (int i = 0; i < n; i++) {
                if (h[i] == INF_T) continue;
                for (auto &e : es[i]) {
                    if (e.cap > zero_F && h[i] + e.cost < h[e.to]) {
                        h[e.to] = h[i] + e.cost;
                        update = true;
                    }
                }
            }
            if (!update) break;
        }
    }

    void dag_shortest_path(int s) {
        vector<int> deg(n, 0);
        for (int i = 0; i < n; i++) {
            for (auto &e : es[i]) {
                if (e.cap > zero_F) deg[e.to]++;
            }
        }
        fill(begin(h), end(h), INF_T);
        h[s] = zero_T;
        queue<int> que;
        for (int i = 0; i < n; i++) {
            if (deg[i] == 0) que.push(i);
        }
        while (!que.empty()) {
            int i = que.front();
            que.pop();
            for (auto &e : es[i]) {
                if (e.cap == zero_F) continue;
                h[e.to] = min(h[e.to], h[i] + e.cost);
                if (--deg[e.to] == 0) que.push(e.to);
            }
        }
    }

    void dijkstra(int s) {
        fill(begin(d), end(d), INF_T);
        using P = pair<T, int>;
        priority_queue<P, vector<P>, greater<P>> que;
        que.emplace(d[s] = zero_T, s);
        while (!que.empty()) {
            auto [p, i] = que.top();
            que.pop();
            if (p > d[i]) continue;
            for (int j = 0; j < (int)es[i].size(); j++) {
                edge &e = es[i][j];
                if (e.cap > zero_F && d[i] + e.cost + h[i] - h[e.to] < d[e.to]) {
                    d[e.to] = d[i] + e.cost + h[i] - h[e.to];
                    pre_v[e.to] = i, pre_e[e.to] = j;
                    que.emplace(d[e.to], e.to);
                }
            }
        }
    }

    T min_cost_flow(int s, int t, F flow, bool dag = false) {
        T ret = zero_T;
        if (negative) dag ? dag_shortest_path(s) : bellman_ford(s);
        while (flow > zero_F) {
            dijkstra(s);
            if (d[t] == INF_T) return INF_T;
            for (int i = 0; i < n; i++) {
                if (h[i] == INF_T || d[i] == INF_T) {
                    h[i] = INF_T;
                } else {
                    h[i] += d[i];
                }
            }
            F f = flow;
            for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap);
            ret += h[t] * f, flow -= f;
            for (int now = t; now != s; now = pre_v[now]) {
                edge &e = es[pre_v[now]][pre_e[now]];
                e.cap -= f, es[now][e.rev].cap += f;
            }
        }
        return ret;
    }

    vector<pair<T, F>> min_cost_flow_slope(int s, int t, bool dag = false) {
        vector<pair<T, F>> ret;
        if (negative) dag ? dag_shortest_path(s) : bellman_ford(s);
        while (true) {
            dijkstra(s);
            if (d[t] == INF_T) break;
            for (int i = 0; i < n; i++) {
                if (h[i] == INF_T || d[i] == INF_T) {
                    h[i] = INF_T;
                } else {
                    h[i] += d[i];
                }
            }
            F f = INF_F;
            for (int now = t; now != s; now = pre_v[now]) f = min(f, es[pre_v[now]][pre_e[now]].cap);
            if (!ret.empty() && ret.back().first == h[t]) {
                ret.back().second += f;
            } else {
                ret.emplace_back(h[t], f);
            }
            for (int now = t; now != s; now = pre_v[now]) {
                edge &e = es[pre_v[now]][pre_e[now]];
                e.cap -= f, es[now][e.rev].cap += f;
            }
        }
        return ret;
    }
};

void solve() {
    int K, N, M;
    cin >> K >> N >> M;

    Primal_Dual<ll, ll> G(N + 2);
    int s = N, t = s + 1;

    rep(i, K) {
        int x;
        cin >> x;
        x--;
        G.add_edge(s, x, 1, 0);
    }

    rep(i, N) {
        int x;
        cin >> x;
        G.add_edge(i, t, x, 0);
    }

    rep(i, M) {
        int u, v;
        ll d;
        cin >> u >> v >> d;
        u--, v--;
        G.add_edge(u, v, INF, d);
        G.add_edge(v, u, INF, d);
    }

    cout << G.min_cost_flow(s, t, K) << '\n';
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0