結果

問題 No.2421 entersys?
ユーザー lloyzlloyz
提出日時 2024-01-17 07:23:21
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,593 ms / 3,000 ms
コード長 6,721 bytes
コンパイル時間 493 ms
コンパイル使用メモリ 82,424 KB
実行使用メモリ 270,824 KB
最終ジャッジ日時 2024-09-28 03:09:54
合計ジャッジ時間 28,341 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 59 ms
68,096 KB
testcase_01 AC 89 ms
78,080 KB
testcase_02 AC 111 ms
78,976 KB
testcase_03 AC 66 ms
71,676 KB
testcase_04 AC 78 ms
77,824 KB
testcase_05 AC 97 ms
78,208 KB
testcase_06 AC 97 ms
78,080 KB
testcase_07 AC 98 ms
78,464 KB
testcase_08 AC 101 ms
78,464 KB
testcase_09 AC 124 ms
79,744 KB
testcase_10 AC 95 ms
78,160 KB
testcase_11 AC 1,253 ms
209,540 KB
testcase_12 AC 1,259 ms
211,316 KB
testcase_13 AC 1,248 ms
211,312 KB
testcase_14 AC 1,269 ms
211,528 KB
testcase_15 AC 1,250 ms
211,408 KB
testcase_16 AC 1,285 ms
229,316 KB
testcase_17 AC 1,310 ms
231,380 KB
testcase_18 AC 1,296 ms
229,068 KB
testcase_19 AC 1,299 ms
228,032 KB
testcase_20 AC 1,285 ms
227,864 KB
testcase_21 AC 1,109 ms
218,412 KB
testcase_22 AC 965 ms
208,480 KB
testcase_23 AC 1,591 ms
270,824 KB
testcase_24 AC 1,566 ms
269,388 KB
testcase_25 AC 1,593 ms
268,348 KB
testcase_26 AC 1,217 ms
192,104 KB
testcase_27 AC 1,182 ms
191,812 KB
testcase_28 AC 1,262 ms
191,292 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

class Fenwick_Tree:
    def __init__(self, n):
        self.n = n
        self.data = [0] * n

    def add(self, p, x):
        p += 1
        while p <= self.n:
            self.data[p - 1] += x
            p += p & -p

    def sum(self, l, r):
        '''範囲[l, r)(lからr-1まで)の総和を求める'''
        return self._sum(r) - self._sum(l)

    def _sum(self, r):
        '''範囲[0, r)(0からr-1まで)の総和を求める'''
        s = 0
        while r > 0:
            s += self.data[r - 1]
            r -= r & -r
        return s

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right, insort
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')
 
class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170
 
    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)
 
    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j
 
    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"
 
    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a
 
    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x
 
    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)
 
    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a = self._find_bucket(x)
        insort(a, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
 
    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True
 
    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]
 
    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]
 
    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]
 
    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError
 
    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans
 
    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

def compression(lst):
    sort_lst = sorted(set(lst))
    compression_lst = [None for _ in range(len(lst))]
    ele2ind_dict = dict()
    for i, ele in enumerate(lst):
        compression_lst[i] = bisect_left(sort_lst, ele)
        ele2ind_dict[ele] = compression_lst[i]
    return sort_lst, compression_lst, ele2ind_dict

import sys
def input():
    return sys.stdin.readline().rstrip()

n = int(input())
T = []
X = []
for _ in range(n):
    x, l, r = input().split()
    l = int(l)
    r = int(r)
    T.append(l)
    T.append(r)
    X.append((x, l, r))
q = int(input())
Q = []
for _ in range(q):
    QQ = list(input().split())
    Q.append(QQ)
    if QQ[0] == '1':
        T.append(int(QQ[2]))
    elif QQ[0] == '2':
        T.append(int(QQ[1]))
    else:
        T.append(int(QQ[2]))
        T.append(int(QQ[3]))
_, _, Tdict = compression(T)
m = len(Tdict)
tree = Fenwick_Tree(m + 5)
L = dict()
R = dict()
for i in range(n):
    x, l, r = X[i]
    if x not in L:
        L[x] = SortedMultiset()
        R[x] = SortedMultiset()
    L[x].add(Tdict[l])
    tree.add(Tdict[l], 1)
    R[x].add(Tdict[r])
    tree.add(Tdict[r] + 1, -1)
for i in range(q):
    QQ = Q[i]
    if QQ[0] == '1':
        x, t = QQ[1:]
        t = int(t)
        if x not in L:
            print("No")
            continue
        tidx = Tdict[t]
        idx = bisect_right(L[x], tidx) - 1
        if idx == -1:
            print("No")
            continue
        r = R[x][idx]
        if tidx <= r:
            print("Yes")
        else:
            print("No")
    elif QQ[0] == '2':
        t = QQ[1]
        t = int(t)
        tidx = Tdict[t]
        print(tree._sum(tidx + 1))
    else:
        x, l, r = QQ[1:]
        l = int(l)
        r = int(r)
        if x not in L:
            L[x] = SortedMultiset()
            R[x] = SortedMultiset()
        L[x].add(Tdict[l])
        tree.add(Tdict[l], 1)
        R[x].add(Tdict[r])
        tree.add(Tdict[r] + 1, -1)

0