結果
| 問題 |
No.2615 ペアの作り方
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-01-27 01:23:03 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 48 ms / 2,000 ms |
| コード長 | 7,703 bytes |
| コンパイル時間 | 2,146 ms |
| コンパイル使用メモリ | 187,484 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-28 09:25:15 |
| 合計ジャッジ時間 | 3,514 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
/* 💕💕💕💕💕
💗💗💗💗💗
/)/)
( . .)
( づ💗
💗💗💗 💗💗💗
💗💗💗💗💗💗💗💗💗
💗💗💗💗💗💗💗💗💗
💗💗💗💗💗💗💗
💗💗💗💗💗
💗💗💗
💗
*/
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <sstream>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T1, typename T2>
std::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != (int)v.size() ? " " : "");
}
return os;
}
template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
template <typename T>
struct FenwickTree {
std::vector<T> bit;
int n;
FenwickTree(int _n) : n(_n), bit(_n) {}
T sum(int r) {
T ret = 0;
for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
return ret;
}
T sum(int l, int r) {
assert(l <= r);
return sum(r) - sum(l - 1);
} // [l, r]
void add(int idx, T delta) {
for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
}
void set(int idx, T val) { add(idx, val - sum(idx, idx)); }
};
std::pair<std::vector<int>, std::vector<int>> get_prime_factor_with_kinds(
int n) {
std::vector<int> prime_factors;
std::vector<int> cnt; // number of i_th factor
for (int i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
prime_factors.push_back(i);
cnt.push_back(0);
while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++;
}
}
if (n > 1) prime_factors.push_back(n), cnt.push_back(1);
assert(prime_factors.size() == cnt.size());
return {prime_factors, cnt};
}
namespace internal {
template <class E>
struct csr {
std::vector<int> start;
std::vector<E> elist;
explicit csr(int n, const std::vector<std::pair<int, E>> &edges)
: start(n + 1), elist(edges.size()) {
for (auto e : edges) {
start[e.first + 1]++;
}
for (int i = 1; i <= n; i++) {
start[i] += start[i - 1];
}
auto counter = start;
for (auto e : edges) {
elist[counter[e.first]++] = e.second;
}
}
};
} // namespace internal
struct scc_graph {
public:
explicit scc_graph(int n) : _n(n) {}
int num_vertices() { return _n; }
void add_edge(int from, int to) { edges.push_back({from, {to}}); }
// @return pair of (# of scc, scc id)
std::pair<int, std::vector<int>> scc_ids() {
auto g = internal::csr<edge>(_n, edges);
int now_ord = 0, group_num = 0;
std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
visited.reserve(_n);
auto dfs = [&](auto self, int v) -> void {
low[v] = ord[v] = now_ord++;
visited.push_back(v);
for (int i = g.start[v]; i < g.start[v + 1]; i++) {
auto to = g.elist[i].to;
if (ord[to] == -1) {
self(self, to);
low[v] = std::min(low[v], low[to]);
} else {
low[v] = std::min(low[v], ord[to]);
}
}
if (low[v] == ord[v]) {
while (true) {
int u = visited.back();
visited.pop_back();
ord[u] = _n;
ids[u] = group_num;
if (u == v) break;
}
group_num++;
}
};
for (int i = 0; i < _n; i++) {
if (ord[i] == -1) dfs(dfs, i);
}
for (auto &x : ids) {
x = group_num - 1 - x;
}
return {group_num, ids};
}
std::vector<std::vector<int>> scc() {
auto ids = scc_ids();
int group_num = ids.first;
std::vector<int> counts(group_num);
for (auto x : ids.second) counts[x]++;
std::vector<std::vector<int>> groups(ids.first);
for (int i = 0; i < group_num; i++) {
groups[i].reserve(counts[i]);
}
for (int i = 0; i < _n; i++) {
groups[ids.second[i]].push_back(i);
}
return groups;
}
private:
int _n;
struct edge {
int to;
};
std::vector<std::pair<int, edge>> edges;
};
template <typename T>
struct DSU {
std::vector<T> f, siz;
DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
T leader(T x) {
while (x != f[x]) x = f[x] = f[f[x]];
return x;
}
bool same(T x, T y) { return leader(x) == leader(y); }
bool merge(T x, T y) {
x = leader(x);
y = leader(y);
if (x == y) return false;
siz[x] += siz[y];
f[y] = x;
return true;
}
T size(int x) { return siz[leader(x)]; }
};
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt &operator^=(long long p) { // quick_pow here:3
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {
x = p;
return ModInt(*this);
} // added by QCFium
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using mint = ModInt<998244353>;
void solve() {
int n;
std::cin >> n;
std::vector<std::pair<int, int>> a(2 * n);
for (int i = 0; i < n; i++) {
int x;
std::cin >> x;
a[i] = {x, 0};
}
for (int i = 0; i < n; i++) {
int x;
std::cin >> x;
a[i + n] = {x, 1};
}
std::vector<mint> fac(n + 1);
fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * mint(i);
std::sort(a.begin(), a.end());
int x = 0, y = 0;
for (int i = 0; i < n; i++) {
auto [_, t] = a[i];
if (t == 0)
x++;
else
y++;
}
std::cout << fac[x] * fac[y] << "\n";
}
int main() {
int t = 1;
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
// std::cin >> t;
while (t--) solve();
return 0;
}