結果

問題 No.2615 ペアの作り方
ユーザー OnjoujiTokiOnjoujiToki
提出日時 2024-01-27 01:23:03
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 48 ms / 2,000 ms
コード長 7,703 bytes
コンパイル時間 2,146 ms
コンパイル使用メモリ 187,484 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-28 09:25:15
合計ジャッジ時間 3,514 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 3 ms
5,376 KB
testcase_15 AC 47 ms
5,376 KB
testcase_16 AC 48 ms
5,376 KB
testcase_17 AC 46 ms
5,376 KB
testcase_18 AC 47 ms
5,376 KB
testcase_19 AC 48 ms
5,376 KB
testcase_20 AC 48 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* 💕💕💕💕💕
💗💗💗💗💗
  /)/)
( . .)
( づ💗

    💗💗💗  💗💗💗
  💗💗💗💗💗💗💗💗💗
  💗💗💗💗💗💗💗💗💗
    💗💗💗💗💗💗💗
      💗💗💗💗💗
        💗💗💗
          💗

*/
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <deque>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <ranges>
#include <set>
#include <sstream>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>

template <typename T1, typename T2>
std::ostream &operator<<(std::ostream &os, const std::pair<T1, T2> &p) {
  os << p.first << " " << p.second;
  return os;
}

template <typename T1, typename T2>
std::istream &operator>>(std::istream &is, std::pair<T1, T2> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != (int)v.size() ? " " : "");
  }
  return os;
}

template <typename T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

template <typename T>
struct FenwickTree {
  std::vector<T> bit;
  int n;
  FenwickTree(int _n) : n(_n), bit(_n) {}

  T sum(int r) {
    T ret = 0;
    for (; r >= 0; r = (r & (r + 1)) - 1) ret += bit[r];
    return ret;
  }

  T sum(int l, int r) {
    assert(l <= r);
    return sum(r) - sum(l - 1);
  }  // [l, r]

  void add(int idx, T delta) {
    for (; idx < n; idx = idx | (idx + 1)) bit[idx] += delta;
  }
  void set(int idx, T val) { add(idx, val - sum(idx, idx)); }
};

std::pair<std::vector<int>, std::vector<int>> get_prime_factor_with_kinds(
    int n) {
  std::vector<int> prime_factors;
  std::vector<int> cnt;  // number of i_th factor
  for (int i = 2; i <= sqrt(n); i++) {
    if (n % i == 0) {
      prime_factors.push_back(i);
      cnt.push_back(0);
      while (n % i == 0) n /= i, cnt[(int)prime_factors.size() - 1]++;
    }
  }
  if (n > 1) prime_factors.push_back(n), cnt.push_back(1);
  assert(prime_factors.size() == cnt.size());
  return {prime_factors, cnt};
}

namespace internal {

template <class E>
struct csr {
  std::vector<int> start;
  std::vector<E> elist;
  explicit csr(int n, const std::vector<std::pair<int, E>> &edges)
      : start(n + 1), elist(edges.size()) {
    for (auto e : edges) {
      start[e.first + 1]++;
    }
    for (int i = 1; i <= n; i++) {
      start[i] += start[i - 1];
    }
    auto counter = start;
    for (auto e : edges) {
      elist[counter[e.first]++] = e.second;
    }
  }
};

}  // namespace internal

struct scc_graph {
 public:
  explicit scc_graph(int n) : _n(n) {}

  int num_vertices() { return _n; }

  void add_edge(int from, int to) { edges.push_back({from, {to}}); }

  // @return pair of (# of scc, scc id)
  std::pair<int, std::vector<int>> scc_ids() {
    auto g = internal::csr<edge>(_n, edges);
    int now_ord = 0, group_num = 0;
    std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
    visited.reserve(_n);
    auto dfs = [&](auto self, int v) -> void {
      low[v] = ord[v] = now_ord++;
      visited.push_back(v);
      for (int i = g.start[v]; i < g.start[v + 1]; i++) {
        auto to = g.elist[i].to;
        if (ord[to] == -1) {
          self(self, to);
          low[v] = std::min(low[v], low[to]);
        } else {
          low[v] = std::min(low[v], ord[to]);
        }
      }
      if (low[v] == ord[v]) {
        while (true) {
          int u = visited.back();
          visited.pop_back();
          ord[u] = _n;
          ids[u] = group_num;
          if (u == v) break;
        }
        group_num++;
      }
    };
    for (int i = 0; i < _n; i++) {
      if (ord[i] == -1) dfs(dfs, i);
    }
    for (auto &x : ids) {
      x = group_num - 1 - x;
    }
    return {group_num, ids};
  }

  std::vector<std::vector<int>> scc() {
    auto ids = scc_ids();
    int group_num = ids.first;
    std::vector<int> counts(group_num);
    for (auto x : ids.second) counts[x]++;
    std::vector<std::vector<int>> groups(ids.first);
    for (int i = 0; i < group_num; i++) {
      groups[i].reserve(counts[i]);
    }
    for (int i = 0; i < _n; i++) {
      groups[ids.second[i]].push_back(i);
    }
    return groups;
  }

 private:
  int _n;
  struct edge {
    int to;
  };
  std::vector<std::pair<int, edge>> edges;
};

template <typename T>
struct DSU {
  std::vector<T> f, siz;
  DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }
  T leader(T x) {
    while (x != f[x]) x = f[x] = f[f[x]];
    return x;
  }
  bool same(T x, T y) { return leader(x) == leader(y); }
  bool merge(T x, T y) {
    x = leader(x);
    y = leader(y);
    if (x == y) return false;
    siz[x] += siz[y];
    f[y] = x;
    return true;
  }
  T size(int x) { return siz[leader(x)]; }
};

template <int mod>
struct ModInt {
  int x;
  ModInt() : x(0) {}
  ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
  ModInt &operator+=(const ModInt &p) {
    if ((x += p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator-=(const ModInt &p) {
    if ((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }
  ModInt &operator*=(const ModInt &p) {
    x = (int)(1LL * x * p.x % mod);
    return *this;
  }
  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }
  ModInt &operator^=(long long p) {  // quick_pow here:3
    ModInt res = 1;
    for (; p; p >>= 1) {
      if (p & 1) res *= *this;
      *this *= *this;
    }
    return *this = res;
  }
  ModInt operator-() const { return ModInt(-x); }
  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
  ModInt operator^(long long p) const { return ModInt(*this) ^= p; }
  bool operator==(const ModInt &p) const { return x == p.x; }
  bool operator!=(const ModInt &p) const { return x != p.x; }
  explicit operator int() const { return x; }  // added by QCFium
  ModInt operator=(const int p) {
    x = p;
    return ModInt(*this);
  }  // added by QCFium
  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      a -= t * b;
      std::swap(a, b);
      u -= t * v;
      std::swap(u, v);
    }
    return ModInt(u);
  }
  friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {
    return os << p.x;
  }
  friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {
    long long x;
    is >> x;
    a = ModInt<mod>(x);
    return (is);
  }
};

using mint = ModInt<998244353>;
void solve() {
  int n;
  std::cin >> n;

  std::vector<std::pair<int, int>> a(2 * n);
  for (int i = 0; i < n; i++) {
    int x;
    std::cin >> x;
    a[i] = {x, 0};
  }
  for (int i = 0; i < n; i++) {
    int x;
    std::cin >> x;
    a[i + n] = {x, 1};
  }
  std::vector<mint> fac(n + 1);
  fac[0] = 1;
  for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * mint(i);
  std::sort(a.begin(), a.end());

  int x = 0, y = 0;
  for (int i = 0; i < n; i++) {
    auto [_, t] = a[i];
    if (t == 0)
      x++;
    else
      y++;
  }
  std::cout << fac[x] * fac[y] << "\n";
}

int main() {
  int t = 1;
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);
  // std::cin >> t;
  while (t--) solve();

  return 0;
}
0