結果

問題 No.2624 Prediction by Average
ユーザー AerenAeren
提出日時 2024-02-09 22:27:11
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,144 bytes
コンパイル時間 3,072 ms
コンパイル使用メモリ 257,316 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-09-28 15:41:33
合計ジャッジ時間 3,335 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 2 ms
6,820 KB
testcase_04 WA -
testcase_05 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif

template<int id, class data_t, class wider_data_t>
struct modular_unfixed_base{
#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)
#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)
	static_assert(IS_UNSIGNED(data_t) && IS_UNSIGNED(wider_data_t));
	static constexpr bool VARIATE_MOD_FLAG = true;
	static data_t _mod;
	static wider_data_t _inverse_mod;
	static data_t &mod(){
		return _mod;
	}
	static void precalc_barrett(){
		_inverse_mod = (wider_data_t)-1 / _mod + 1;
	}
	static void setup(data_t mod = 0){
		if(!mod) cin >> mod;
		_mod = mod;
		assert(_mod >= 1);
		precalc_barrett();
	}
	template<class T>
	static vector<modular_unfixed_base> precalc_power(T base, int SZ){
		vector<modular_unfixed_base> res(SZ + 1, 1);
		for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
		return res;
	}
	static vector<modular_unfixed_base> _INV;
	static void precalc_inverse(int SZ){
		if(_INV.empty()) _INV.assign(2, 1);
		for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
	}
	// _mod must be a prime
	static modular_unfixed_base _primitive_root;
	static modular_unfixed_base primitive_root(){
		if(_primitive_root) return _primitive_root;
		if(_mod == 2) return _primitive_root = 1;
		if(_mod == 998244353) return _primitive_root = 3;
		data_t divs[20] = {};
		divs[0] = 2;
		int cnt = 1;
		data_t x = (_mod - 1) / 2;
		while(x % 2 == 0) x /= 2;
		for(auto i = 3; 1LL * i * i <= x; i += 2){
			if(x % i == 0){
				divs[cnt ++] = i;
				while(x % i == 0) x /= i;
			}
		}
		if(x > 1) divs[cnt ++] = x;
		for(auto g = 2; ; ++ g){
			bool ok = true;
			for(auto i = 0; i < cnt; ++ i){
				if((modular_unfixed_base(g).power((_mod - 1) / divs[i])) == 1){
					ok = false;
					break;
				}
			}
			if(ok) return _primitive_root = g;
		}
	}
	constexpr modular_unfixed_base(){ }
	modular_unfixed_base(const double &x){ data = _normalize(llround(x)); }
	modular_unfixed_base(const long double &x){ data = _normalize(llround(x)); }
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_unfixed_base(const T &x){ data = _normalize(x); }
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){
		if(_mod == 1) return 0;
		if constexpr(is_same_v<data_t, unsigned int>){
			assert(_inverse_mod);
			int sign = x >= 0 ? 1 : -1;
			data_t v = _mod <= sign * x ? sign * x - ((__uint128_t)(sign * x) * _inverse_mod >> 64) * _mod : sign * x;
			if(v >= _mod) v += _mod;
			if(sign == -1 && v) v = _mod - v;
			return v;
		}
		else{
			int sign = x >= 0 ? 1 : -1;
			data_t v =  _mod <= sign * x ? sign * x % _mod : sign * x;
			if(sign == -1 && v) v = _mod - v;
			return v;
		}
	}
	const data_t &operator()() const{ return data; }
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }
	modular_unfixed_base &operator+=(const modular_unfixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
	modular_unfixed_base &operator-=(const modular_unfixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_unfixed_base &operator+=(const T &otr){ return *this += modular_unfixed_base(otr); }
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_unfixed_base &operator-=(const T &otr){ return *this -= modular_unfixed_base(otr); }
	modular_unfixed_base &operator++(){ return *this += 1; }
	modular_unfixed_base &operator--(){ return *this += _mod - 1; }
	modular_unfixed_base operator++(int){ modular_unfixed_base result(*this); *this += 1; return result; }
	modular_unfixed_base operator--(int){ modular_unfixed_base result(*this); *this += _mod - 1; return result; }
	modular_unfixed_base operator-() const{ return modular_unfixed_base(_mod - data); }
	modular_unfixed_base &operator*=(const modular_unfixed_base &rhs){
		if constexpr(is_same_v<data_t, unsigned long long>){
			long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);
			data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);
		}
		else data = _normalize((wider_data_t)data * rhs.data);
		return *this;
	}
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
	modular_unfixed_base &inplace_power(T e){
		if(e == 0) return *this = 1;
		if(data == 0) return *this = {};
		if(data == 1) return *this;
		if(data == mod() - 1) return e % 2 ? *this : *this = -*this;
		if(e < 0) *this = 1 / *this, e = -e;
		modular_unfixed_base res = 1;
		for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
		return *this = res;
	}
	template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
	modular_unfixed_base power(T e) const{
		return modular_unfixed_base(*this).inplace_power(e);
	}
	modular_unfixed_base &operator/=(const modular_unfixed_base &otr){
		make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;
		if(a < _INV.size()) return *this *= _INV[a];
		while(a){
			make_signed_t<data_t> t = m / a;
			m -= t * a; swap(a, m);
			u -= t * v; swap(u, v);
		}
		assert(m == 1);
		return *this *= u;
	}
#define ARITHMETIC_OP(op, apply_op)\
modular_unfixed_base operator op(const modular_unfixed_base &x) const{ return modular_unfixed_base(*this) apply_op x; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
modular_unfixed_base operator op(const T &x) const{ return modular_unfixed_base(*this) apply_op modular_unfixed_base(x); }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend modular_unfixed_base operator op(const T &x, const modular_unfixed_base &y){ return modular_unfixed_base(x) apply_op y; }
	ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)
#undef ARITHMETIC_OP
#define COMPARE_OP(op)\
bool operator op(const modular_unfixed_base &x) const{ return data op x.data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
bool operator op(const T &x) const{ return data op modular_unfixed_base(x).data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend bool operator op(const T &x, const modular_unfixed_base &y){ return modular_unfixed_base(x).data op y.data; }
	COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)
#undef COMPARE_OP
	friend istream &operator>>(istream &in, modular_unfixed_base &number){
		long long x;
		in >> x;
		number.data = modular_unfixed_base::_normalize(x);
		return in;
	}
//#define _SHOW_FRACTION
	friend ostream &operator<<(ostream &out, const modular_unfixed_base &number){
		out << number.data;
	#if defined(LOCAL) && defined(_SHOW_FRACTION)
		cerr << "(";
		for(auto d = 1; ; ++ d){
			if((number * d).data <= 1000000){
				cerr << (number * d).data;
				if(d != 1) cerr << "/" << d;
				break;
			}
			else if((-number * d).data <= 1000000){
				cerr << "-" << (-number * d).data;
				if(d != 1) cerr << "/" << d;
				break;
			}
		}
		cerr << ")";
	#endif
		return out;
	}
	data_t data = 0;
#undef _SHOW_FRACTION
#undef IS_INTEGRAL
#undef IS_SIGNED
};
template<int id, class data_t, class wider_data_t> data_t modular_unfixed_base<id, data_t, wider_data_t>::_mod;
template<int id, class data_t, class wider_data_t> wider_data_t modular_unfixed_base<id, data_t, wider_data_t>::_inverse_mod;
template<int id, class data_t, class wider_data_t> vector<modular_unfixed_base<id, data_t, wider_data_t>> modular_unfixed_base<id, data_t, wider_data_t>::_INV;
template<int id, class data_t, class wider_data_t> modular_unfixed_base<id, data_t, wider_data_t> modular_unfixed_base<id, data_t, wider_data_t>::_primitive_root;

using modular = modular_unfixed_base<0, unsigned int, unsigned long long>;
// using modular = modular_unfixed_base<0, unsigned long long, __uint128_t>;

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	auto __solve_tc = [&](auto __tc_num)->int{
		long long th;
		string s;
		cin >> th >> s;
		{
			auto it = ranges::find(s, '.');
			if(it == s.end()){
				s += '.';
				it = prev(s.end());
			}
			s += string(4 - (s.end() - it), '0');
			erase(s, '.');
		}
		int avg = stoi(s) % 1000;
		long long res = 0;
		{ // 0
			int req = 1000 / gcd(avg, 1000);
			res += th / req;
		}
		for(auto rem = 1; rem <= 999; ++ rem){
			// 1000 - rem <= n
			if(1000 - rem > th){
				continue;
			}
			if(rem % gcd(1000, avg)){
				continue;
			}
			int g = gcd(1000, avg);
			int p = avg / g;
			int q = rem / g;
			int mod = 1000 / g;
			modular::setup(mod);
			int r = modular(q) / p;
			if(th >= r){
				res += 1 + (th - r) / mod;
				if(999 - rem >= r){
					res -= 1 + (999 - rem - r) / mod;
				}
			}
		}
		cout << res << "\n";
		return 0;
	};
	int __tc_cnt;
	cin >> __tc_cnt;
	for(auto __tc_num = 0; __tc_num < __tc_cnt; ++ __tc_num){
		__solve_tc(__tc_num);
	}
	return 0;
}

/*
9, 
*/
0