結果
問題 | No.2625 Bouns Ai |
ユーザー | Aeren |
提出日時 | 2024-02-09 22:42:21 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 6 ms / 2,000 ms |
コード長 | 10,101 bytes |
コンパイル時間 | 2,813 ms |
コンパイル使用メモリ | 252,164 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-09-28 15:52:46 |
合計ジャッジ時間 | 3,525 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
6,816 KB |
testcase_01 | AC | 5 ms
6,820 KB |
testcase_02 | AC | 5 ms
6,816 KB |
testcase_03 | AC | 4 ms
6,816 KB |
testcase_04 | AC | 5 ms
6,820 KB |
testcase_05 | AC | 5 ms
6,816 KB |
testcase_06 | AC | 5 ms
6,820 KB |
testcase_07 | AC | 5 ms
6,816 KB |
testcase_08 | AC | 5 ms
6,820 KB |
testcase_09 | AC | 5 ms
6,820 KB |
testcase_10 | AC | 4 ms
6,816 KB |
testcase_11 | AC | 5 ms
6,824 KB |
testcase_12 | AC | 6 ms
6,816 KB |
testcase_13 | AC | 4 ms
6,816 KB |
testcase_14 | AC | 4 ms
6,820 KB |
testcase_15 | AC | 5 ms
6,816 KB |
testcase_16 | AC | 5 ms
6,820 KB |
testcase_17 | AC | 5 ms
6,816 KB |
testcase_18 | AC | 5 ms
6,820 KB |
testcase_19 | AC | 5 ms
6,816 KB |
testcase_20 | AC | 6 ms
6,820 KB |
testcase_21 | AC | 5 ms
6,816 KB |
testcase_22 | AC | 5 ms
6,816 KB |
testcase_23 | AC | 5 ms
6,816 KB |
testcase_24 | AC | 5 ms
6,820 KB |
testcase_25 | AC | 5 ms
6,820 KB |
ソースコード
// #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template<class data_t, data_t _mod> struct modular_fixed_base{ #define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) #define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>) static_assert(IS_UNSIGNED(data_t)); static_assert(_mod >= 1); static constexpr bool VARIATE_MOD_FLAG = false; static constexpr data_t mod(){ return _mod; } template<class T> static vector<modular_fixed_base> precalc_power(T base, int SZ){ vector<modular_fixed_base> res(SZ + 1, 1); for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base; return res; } static vector<modular_fixed_base> _INV; static void precalc_inverse(int SZ){ if(_INV.empty()) _INV.assign(2, 1); for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]); } // _mod must be a prime static modular_fixed_base _primitive_root; static modular_fixed_base primitive_root(){ if(_primitive_root) return _primitive_root; if(_mod == 2) return _primitive_root = 1; if(_mod == 998244353) return _primitive_root = 3; data_t divs[20] = {}; divs[0] = 2; int cnt = 1; data_t x = (_mod - 1) / 2; while(x % 2 == 0) x /= 2; for(auto i = 3; 1LL * i * i <= x; i += 2){ if(x % i == 0){ divs[cnt ++] = i; while(x % i == 0) x /= i; } } if(x > 1) divs[cnt ++] = x; for(auto g = 2; ; ++ g){ bool ok = true; for(auto i = 0; i < cnt; ++ i){ if((modular_fixed_base(g).power((_mod - 1) / divs[i])) == 1){ ok = false; break; } } if(ok) return _primitive_root = g; } } constexpr modular_fixed_base(){ } modular_fixed_base(const double &x){ data = _normalize(llround(x)); } modular_fixed_base(const long double &x){ data = _normalize(llround(x)); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){ int sign = x >= 0 ? 1 : -1; data_t v = _mod <= sign * x ? sign * x % _mod : sign * x; if(sign == -1 && v) v = _mod - v; return v; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; } modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; } modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); } modular_fixed_base &operator++(){ return *this += 1; } modular_fixed_base &operator--(){ return *this += _mod - 1; } modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; } modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; } modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); } modular_fixed_base &operator*=(const modular_fixed_base &rhs){ if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod; else if constexpr(is_same_v<data_t, unsigned long long>){ long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data); data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod); } else data = _normalize(data * rhs.data); return *this; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &inplace_power(T e){ if(e == 0) return *this = 1; if(data == 0) return *this = {}; if(data == 1) return *this; if(data == mod() - 1) return e % 2 ? *this : *this = -*this; if(e < 0) *this = 1 / *this, e = -e; modular_fixed_base res = 1; for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base power(T e) const{ return modular_fixed_base(*this).inplace_power(e); } modular_fixed_base &operator/=(const modular_fixed_base &otr){ make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1; if(a < _INV.size()) return *this *= _INV[a]; while(a){ make_signed_t<data_t> t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return *this *= u; } #define ARITHMETIC_OP(op, apply_op)\ modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; } ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=) #undef ARITHMETIC_OP #define COMPARE_OP(op)\ bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\ template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\ friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; } COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=) #undef COMPARE_OP friend istream &operator>>(istream &in, modular_fixed_base &number){ long long x; in >> x; number.data = modular_fixed_base::_normalize(x); return in; } //#define _SHOW_FRACTION friend ostream &operator<<(ostream &out, const modular_fixed_base &number){ out << number.data; #if defined(LOCAL) && defined(_SHOW_FRACTION) cerr << "("; for(auto d = 1; ; ++ d){ if((number * d).data <= 1000000){ cerr << (number * d).data; if(d != 1) cerr << "/" << d; break; } else if((-number * d).data <= 1000000){ cerr << "-" << (-number * d).data; if(d != 1) cerr << "/" << d; break; } } cerr << ")"; #endif return out; } data_t data = 0; #undef _SHOW_FRACTION #undef IS_INTEGRAL #undef IS_SIGNED }; template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV; template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root; const unsigned int mod = (119 << 23) + 1; // 998244353 // const unsigned int mod = 1e9 + 7; // 1000000007 // const unsigned int mod = 1e9 + 9; // 1000000009 // const unsigned long long mod = (unsigned long long)1e18 + 9; using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>; template<class T> struct combinatorics{ // O(n) static vector<T> precalc_fact(int n){ vector<T> f(n + 1, 1); for(auto i = 1; i <= n; ++ i) f[i] = f[i - 1] * i; return f; } // O(n * m) static vector<vector<T>> precalc_C(int n, int m){ vector<vector<T>> c(n + 1, vector<T>(m + 1)); for(auto i = 0; i <= n; ++ i) for(auto j = 0; j <= min(i, m); ++ j) c[i][j] = i && j ? c[i - 1][j - 1] + c[i - 1][j] : T(1); return c; } int SZ = 0; vector<T> inv, fact, invfact; combinatorics(){ } // O(SZ) combinatorics(int SZ): SZ(SZ), inv(SZ + 1, 1), fact(SZ + 1, 1), invfact(SZ + 1, 1){ for(auto i = 1; i <= SZ; ++ i) fact[i] = fact[i - 1] * i; invfact[SZ] = 1 / fact[SZ]; for(auto i = SZ - 1; i >= 0; -- i){ invfact[i] = invfact[i + 1] * (i + 1); inv[i + 1] = invfact[i + 1] * fact[i]; } } // O(1) T C(int n, int k) const{ assert(0 <= min(n, k) && max(n, k) <= SZ); return n >= k ? fact[n] * invfact[k] * invfact[n - k] : T{0}; } // O(1) T P(int n, int k) const{ assert(0 <= min(n, k) && max(n, k) <= SZ); return n >= k ? fact[n] * invfact[n - k] : T{0}; } // O(1) T H(int n, int k) const{ assert(0 <= min(n, k)); if(n == 0) return 0; return C(n + k - 1, k); } // O(min(k, n - k)) T naive_C(long long n, long long k) const{ assert(0 <= min(n, k)); if(n < k) return 0; T res = 1; k = min(k, n - k); assert(k <= SZ); for(auto i = n; i > n - k; -- i) res *= i; return res * invfact[k]; } // O(k) T naive_P(long long n, int k) const{ assert(0 <= min<long long>(n, k)); if(n < k) return 0; T res = 1; for(auto i = n; i > n - k; -- i) res *= i; return res; } // O(k) T naive_H(long long n, int k) const{ assert(0 <= min<long long>(n, k)); return naive_C(n + k - 1, k); } // O(1) bool parity_C(long long n, long long k) const{ assert(0 <= min(n, k)); return n >= k ? (n & k) == k : false; } // Number of ways to place n '('s and k ')'s starting with m copies of '(' such that in each prefix, number of '(' is equal or greater than ')' // Catalan(n, n, 0): n-th catalan number // Catalan(s, s+k-1, k-1): sum of products of k catalan numbers where the index of product sums up to s. // O(1) T Catalan(int n, int k, int m = 0) const{ assert(0 <= min({n, k, m})); return k <= m ? C(n + k, n) : k <= n + m ? C(n + k, n) - C(n + k, k - m - 1) : T(); } }; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n; cin >> n; vector<int> a(n); copy_n(istream_iterator<int>(cin), n, a.begin()); vector<int> low(n); for(auto i = 0; i < n - 1; ++ i){ low[i + 1] = max(0, a[i] - a[i + 1]); } const int mx = 100'000; combinatorics<modular> C(mx << 1); if(accumulate(low.begin(), low.end(), 0LL + a[n - 1]) > mx){ cout << "0\n"; } else{ cout << C.H(n + 1, mx - accumulate(low.begin(), low.end(), a[n - 1])) << "\n"; } return 0; } /* */