結果
問題 | No.2625 Bouns Ai |
ユーザー | shino16 |
提出日時 | 2024-02-09 22:46:43 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 108 ms / 2,000 ms |
コード長 | 24,973 bytes |
コンパイル時間 | 2,988 ms |
コンパイル使用メモリ | 261,368 KB |
実行使用メモリ | 85,660 KB |
最終ジャッジ日時 | 2024-09-28 15:56:15 |
合計ジャッジ時間 | 5,525 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
8,408 KB |
testcase_01 | AC | 3 ms
8,144 KB |
testcase_02 | AC | 5 ms
11,728 KB |
testcase_03 | AC | 107 ms
83,532 KB |
testcase_04 | AC | 74 ms
83,916 KB |
testcase_05 | AC | 108 ms
83,532 KB |
testcase_06 | AC | 105 ms
83,664 KB |
testcase_07 | AC | 108 ms
83,660 KB |
testcase_08 | AC | 106 ms
83,788 KB |
testcase_09 | AC | 107 ms
83,660 KB |
testcase_10 | AC | 73 ms
84,484 KB |
testcase_11 | AC | 4 ms
8,800 KB |
testcase_12 | AC | 73 ms
85,660 KB |
testcase_13 | AC | 74 ms
84,688 KB |
testcase_14 | AC | 71 ms
83,884 KB |
testcase_15 | AC | 72 ms
84,088 KB |
testcase_16 | AC | 73 ms
84,972 KB |
testcase_17 | AC | 72 ms
83,880 KB |
testcase_18 | AC | 74 ms
85,548 KB |
testcase_19 | AC | 72 ms
84,424 KB |
testcase_20 | AC | 71 ms
83,852 KB |
testcase_21 | AC | 71 ms
84,188 KB |
testcase_22 | AC | 77 ms
85,404 KB |
testcase_23 | AC | 74 ms
84,948 KB |
testcase_24 | AC | 72 ms
85,000 KB |
testcase_25 | AC | 77 ms
84,856 KB |
ソースコード
#line 2 "lib/prelude.hpp" // #ifndef LOCAL // #pragma GCC optimize("O3") // #endif #include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vvi = vector<vector<int>>; using vll = vector<ll>; using vvll = vector<vector<ll>>; using vc = vector<char>; #define rep2(i, m, n) for (auto i = (m); i < (n); i++) #define rep(i, n) rep2(i, 0, n) #define repr2(i, m, n) for (auto i = (n); i-- > (m);) #define repr(i, n) repr2(i, 0, n) #define all(x) begin(x), end(x) template <class T> auto ndvec(int n, T e) { return vector(n, e); } template <class... Ts> auto ndvec(int n, Ts... e) { return vector(n, ndvec(e...)); } #if __cpp_lib_ranges namespace R = std::ranges; namespace V = std::views; #endif #line 3 "lib/io.hpp" struct int1 { int val; int1(int a = 1) : val(a - 1) {} operator int() const { return val; } }; template <size_t BufSize = 1 << 26> class stdin_reader { public: stdin_reader() { buf[fread(buf, 1, sizeof(buf), stdin)] = 0; } template <class T> enable_if_t<is_integral_v<T>> read(T& x) { skip(); [[maybe_unused]] bool neg = false; if constexpr (is_signed_v<T>) neg = *p == '-' ? (p++, true) : false; x = 0; while (*p > ' ') x = x * 10 + (*p++ & 0x0F); if constexpr (is_signed_v<T>) x = neg ? -x : x; } template <class T> void_t<decltype(&T::val)> read(T& x) { x = T((unsigned)(*this)); } void read(char &c) { skip(); c = *p++; } void read(char*& q) { skip(); q = p; while (*p > ' ') p++; *p = 0; } template <size_t N> void read(char (&s)[N]) { read(s); } void read(string& s) { skip(); char* p0 = p; while (*p > ' ') p++; s.assign(p0, p); } template <class T, void_t<decltype(tuple_size<T>::value)>* = nullptr> void read(T& x) { read_tuple_impl(x, make_index_sequence<tuple_size_v<T>>{}); } template <class T, class U> void read(pair<T, U>& x) { read(x.first), read(x.second); } template <class T, size_t N> void read(T (&a)[N]) { for (auto& e : a) read(e); } template <class T> operator T() { T x; return read(x), x; } template <class... Ts> void operator()(Ts&... xs) { (read(xs), ...); } int operator--() { return (int)*this - 1; } template <class T> T* arr(int n) { T* p = new T[n + 1]; rep(i, n) read(p[i]); return p; } template <class T> void vec(vector<T>& v, int n) { v.resize(n); for (auto& e : v) read(e); } template <class T> vector<T> vec(int n) { vector<T> v; return vec(v, n), v; } auto vi(int n) { return vec<int>(n); } auto vi1(int n) { auto v = vec<int>(n); rep(i, n) v[i]--; return v; } auto vll(int n) { return vec<ll>(n); } template <class... Ts> tuple<vector<Ts>...> vecs(int n) { tuple<vector<Ts>...> res; vecs_impl(res, n, make_index_sequence<sizeof...(Ts)>{}); return res; } template <class T> void vvec(vector<vector<T>>& v, int n, int m) { v.resize(n); for (auto& e : v) vec(e, m); } template <class T> vector<vector<T>> vvec(int n, int m) { vector<vector<T>> v; return vvec(v, n, m), v; } template <class... Ts> auto cols(int n) { return transpose(vec<tuple<Ts...>>(n)); } private: char buf[BufSize], *p = buf; void skip() { while (*p <= ' ') p++; } template <class T, size_t... Is> void read_tuple_impl(T& x, index_sequence<Is...>) { (*this)(get<Is>(x)...); } template <class T, size_t... Is> void vecs_impl(T& x, int n, index_sequence<Is...>) { (vec(get<Is>(x), n), ...); } template <class T, size_t... Is> static auto transpose_impl(const vector<T>& v, index_sequence<Is...>) { tuple<vector<decay_t<tuple_element_t<Is, T>>>...> w; (get<Is>(w).reserve(v.size()), ...); for (const auto& row : v) (get<Is>(w).push_back(get<Is>(row)), ...); return w; } template <class T> static auto transpose(const vector<T>& v) { return transpose_impl(v, make_index_sequence<tuple_size_v<T>>{}); } }; template <size_t BufSize = 1 << 26> class stdout_writer { public: ~stdout_writer() { flush(); } void flush() { fwrite(buf, 1, p - buf, stdout), p = buf; } void write_char(char c) { *p++ = c; } void write() {} void write(char c) { write_char(c); } template <class T> enable_if_t<is_integral_v<T>> write(T x) { if (!x) return write_char('0'); if constexpr (is_signed_v<T>) if (x < 0) write_char('-'), x = -x; static char tmp[16]; char* q = end(tmp); while (x >= 10000) memcpy(q -= 4, digits.data + x % 10000 * 4, 4), x /= 10000; if (x < 10) write_char('0' + x); else if (x < 100) write_char('0' + (uint8_t)x / 10), write_char('0' + (uint8_t)x % 10); else if (x < 1000) memcpy(p, digits.data + x * 4 + 1, 3), p += 3; else memcpy(p, digits.data + x * 4, 4), p += 4; memcpy(p, q, end(tmp) - q), p += end(tmp) - q; } template <class T> void_t<decltype(&T::val)> write(T x) { write(x.val()); } void write(double x) { static char tmp[40]; sprintf(tmp, "%.15f", x); write(tmp); } void write(long double x) { static char tmp[40]; sprintf(tmp, "%.15Lf", x); write(tmp); } void write(const char* s) { while (*s) *p++ = *s++; } void write(const string& s) { memcpy(p, s.c_str(), s.size()), p += s.size(); } template <class T, class U> void write(const pair<T, U>& x) { write(x.first), write_char(' '), write(x.second); } template <class... Ts> void write(const tuple<Ts...>& x) { write_tuple(x, make_index_sequence<sizeof...(Ts)>{}); } template <class... Ts> void write(const Ts&... xs) { ((write(xs), write_char(' ')), ...), --p; } template <class... Ts> void writeln(const Ts&... xs) { write(xs...), write_char('\n'); } template <class... Ts> void operator()(const Ts&... xs) { writeln(xs...); } template <class It> void iter(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(*first++), write_char(sep); p[-1] = '\n'; } } template <class It> void iter1(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(1 + *first++), write_char(sep); p[-1] = '\n'; } } template <class T> void vec(const vector<T>& v, char sep = ' ') { iter(all(v), sep); } template <class T> void vec1(const vector<T>& v, char sep = ' ') { iter1(all(v), sep); } void del() { *--p = 0; } void Yes(bool b = true) { writeln(b ? "Yes" : "No"); } void YES(bool b = true) { writeln(b ? "YES" : "NO"); } void Takahashi(bool b = true) { writeln(b ? "Takahashi" : "Aoki"); } private: char buf[BufSize], *p = buf; template <class T, size_t... Is> void write_tuple(const T& x, index_sequence<Is...>) { ((write(get<Is>(x)), write_char(' ')), ...), --p; } struct four_digits { char data[40000]; constexpr four_digits() : data() { for (int i = 0; i < 10000; i++) for (int n = i, j = 4; j--;) data[i * 4 + j] = n % 10 + '0', n /= 10; } } static constexpr digits{}; public: #define INSTANT(s) void s() { writeln(#s); } INSTANT(No) INSTANT(NO) INSTANT(Aoki) INSTANT(possible) INSTANT(Possible) INSTANT(POSSIBLE) INSTANT(impossible) INSTANT(Impossible) INSTANT(IMPOSSIBLE) #undef INSTANT }; stdin_reader<> in; stdout_writer<> out; #line 1 "lib/mod/modint.hpp" #line 6 "lib/mod/modint.hpp" #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "lib/atcoder/internal_math.hpp" #line 5 "lib/atcoder/internal_math.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "lib/atcoder/internal_type_traits.hpp" #line 7 "lib/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "lib/mod/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static constexpr mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> constexpr static_modint(T v) : _v() { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> constexpr static_modint(T v) : _v() { _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } constexpr mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr mint operator++(int) { mint result = *this; ++*this; return result; } constexpr mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } constexpr friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } constexpr friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } constexpr friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } constexpr friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } constexpr friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } constexpr friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } constexpr friend bool operator<(const mint& lhs, const mint& rhs) { return lhs._v < rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend bool operator<(const mint& lhs, const mint& rhs) { return lhs._v < rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 4 "lib/mod/inv.hpp" // #include <atcoder/modint> template <class T = atcoder::modint998244353> T inverse(int n) { static vector<T> v = {T(0), T(1)}; while (v.size() <= n) { v.push_back(-v[T::mod() % v.size()] * (T::mod() / v.size())); } return v[n]; } #line 3 "lib/mod/fact.hpp" template <class T = atcoder::modint998244353> T fact(int n) { static vector<T> v = {T(1)}; while (v.size() <= n) v.push_back(v.back() * v.size()); return v[n]; } template <class T = atcoder::modint998244353> T inv_fact(int n) { static vector<T> v = {T(1)}; while (v.size() <= n) v.push_back(v.back() * inverse<T>(v.size())); return v[n]; } #line 3 "lib/mod/binom.hpp" template <class T = atcoder::modint998244353> T binom(int n, int k) { return k < 0 ? T(0) : n < 0 ? binom<T>(-n + k - 1, k) * T(k % 2 ? -1 : 1) : k > n ? T(0) : fact<T>(n) * inv_fact<T>(k) * inv_fact<T>(n - k); } template <class T = atcoder::modint998244353> T binom_rep(int n, int k) { return binom<T>(n + k - 1, k); } template <class T = atcoder::modint998244353> T multinomial(initializer_list<int> ks) { T ans(1); int n = accumulate(all(ks), 0); rep(i, ks.size() - 1) ans *= binom<T>(n, ks.begin()[i]), n -= ks.begin()[i]; return ans; } #line 3 "main.cpp" using mint = atcoder::modint998244353; mint dp[200][100002]; int main() { int n = in; auto a = in.vi(n); const int hi = 100'001; rep(x, hi) if (x + a[0] < hi) dp[0][x] = 1; exclusive_scan(all(dp[0]), dp[0], mint(0)); rep2(i, 1, n) { rep(x, hi-a[i]) { int hi2 = min(x, x + a[i] - a[i-1]) + 1; dp[i][x] = dp[i-1][max(0, hi2)]; } exclusive_scan(all(dp[i]), dp[i], mint(0)); } out(dp[n-1][hi]); }