結果
| 問題 | No.1254 補強への架け橋 | 
| コンテスト | |
| ユーザー | 👑  Kazun | 
| 提出日時 | 2024-02-12 10:57:48 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 491 ms / 2,000 ms | 
| コード長 | 8,571 bytes | 
| コンパイル時間 | 258 ms | 
| コンパイル使用メモリ | 82,540 KB | 
| 実行使用メモリ | 130,804 KB | 
| 最終ジャッジ日時 | 2024-09-28 17:54:24 | 
| 合計ジャッジ時間 | 28,918 ms | 
| ジャッジサーバーID (参考情報) | judge2 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 123 | 
ソースコード
class Graph:
    __slots__=("edge_offset", "edge_alive", "edge_ids", "vertex_alive", "adjacent", "deg")
    #入力定義
    def __init__(self, N = 0, edge_offset = 0):
        """ N 頂点の空グラフ (多重辺なし) を生成する."""
        self.adjacent = [[] for _ in range(N)]
        self.edge_ids = [[] for _ in range(N)]
        self.vertex_alive = [1] * N
        self.edge_offset = edge_offset
        self.edge_alive = [0] * edge_offset
        self.deg = [0] * N
    #頂点の追加
    def add_vertex(self):
        """ 頂点を追加する.
        """
        self.adjacent.append([])
        self.edge_ids.append([])
        self.vertex_alive.append(1)
        self.deg.append(0)
        return self.order() - 1
    def add_vertices(self, k):
        """ 頂点を k 個追加する.
        k: int
        """
        n=self.order()
        self.adjacent.extend([[] for _ in range(k)])
        self.edge_ids.extend([[] for _ in range(k)])
        self.vertex_alive.extend([1] * k)
        self.deg.extend([0] * k)
        return list(range(n, n + k))
    #辺の追加
    def add_edge(self, u, v):
        """ 無向辺 uv を加える"""
        j = len(self.edge_alive)
        self.adjacent[u].append(v)
        self.adjacent[v].append(u)
        self.edge_ids[u].append(j)
        self.edge_ids[v].append(j)
        self.deg[u] += 1; self.deg[v] += 1
        self.edge_alive.append(1)
        return j
    #辺を除く
    def remove_edge(self,u,v):
        """ 無向辺 uv が存在するならば除く"""
        pass
    def reset_vertex(self, u):
        """ 頂点 u に接続している辺を全て消す."""
        pass
    #Walkの追加
    def add_walk(self, *walk):
        """ walk=(w[0],...,w[n-1]) に対して, n-1 本の辺 w[i]w[i+1] を加える."""
        for i in range(len(walk) - 1):
            self.add_edge(walk[i], walk[i + 1])
    #Cycleの追加
    def add_cycle(self, *cycle):
        """ cycle=(c[0], ..., c[n-1]) を加える. """
        self.add_walk(*cycle)
        self.add_edge(cycle[-1], cycle[0])
    #グラフに辺が存在するか否か
    def edge_exist(self, u, v):
        """ 辺 uv が存在するか? """
        pass
    def partner(self, v):
        adj = self.adjacent[v]
        edge_ids = self.edge_ids[v]
        return [adj[k] for k in range(len(edge_ids)) if self.edge_alive[edge_ids[k]]]
    def partner_with_index(self, v):
        adj = self.adjacent[v]
        edge_ids = self.edge_ids[v]
        return [(adj[k], edge_ids[k]) for k in range(len(edge_ids)) if self.edge_alive[edge_ids[k]]]
    #近傍
    def neighborhood(self, v):
        """ 頂点 v  の近傍を求める. """
        adj = self.adjacent[v]
        edge_ids = self.edge_ids[v]
        return list(set(adj[k] for k in range(len(edge_ids)) if self.edge_alive[edge_ids[k]]))
    #次数
    def degree(self, v):
        """ 頂点 v の次数を求める. """
        return self.deg[v]
    #頂点数
    def vertex_count(self):
        """ グラフの頂点数 (位数) を出力する. """
        return len(self.adjacent)
    def order(self):
        """ グラフの位数 (頂点数) を出力する. """
        return len(self.adjacent)
    #辺数
    def edge_count(self):
        """ 辺の本数 (サイズ) を出力する."""
        return len(self.edge_alive) - self.edge_offset
    def size(self):
        """ サイズ (辺の本数) を出力する. """
        return len(self.edge_alive) - self.edge_offset
    #頂点vを含む連結成分
    def connected_component(self, v):
        """ 頂点 v を含む連結成分を出力する."""
        N = self.order()
        stack = [v]
        comp = [0] * N; comp[v] = 1
        while stack:
            x = stack.pop()
            for y in self.neighborhood(x):
                if comp[y] == 0:
                    comp[y] = 1
                    stack.append(y)
        return [x for x in range(N) if comp[x]]
    #距離
    def distance(self, u, v, default):
        """ 2頂点 u,v 間の距離を求める."""
        if u == v:
            return 0
        from collections import deque
        N = self.order()
        dist = [-1] * N; dist[u]=0
        queue = deque([u])
        while queue:
            x = queue.popleft()
            for y in self.neighborhood(x):
                if dist[y] == -1:
                    dist[y] = dist[x] + 1
                    queue.append(y)
                    if y == v:
                        return dist[v]
        return default
    #ある1点からの距離
    def distance_all(self,u,default=-1):
        """ 頂点 u からの距離を求める."""
        from collections import deque
        N = self.order()
        dist = [-1] * N; dist[u]=0
        queue = deque([u])
        while queue:
            x = queue.popleft()
            for y in self.neighborhood(x):
                if dist[y] == -1:
                    dist[y] = dist[x] + 1
                    queue.append(y)
        return [dist[x] if dist[x] != -1 else default for x in range(N)]
    #最短路
    def shortest_path(self, u, v):
        """ u から v への最短路を求める (存在しない場合は None). """
        if u == v:
            return [u]
        from collections import deque
        prev = [-1] * self.order()
        prev[u] = u
        queue = deque([u])
        while queue:
            x = queue.popleft()
            for y in self.adjacent[x]:
                if prev[x] != -1:
                    continue
                prev[y] = x
                queue.append(y)
                if y != v:
                    continue
                path = [v]
                a = v
                while a != u:
                    a = prev[a]
                    path.append(a)
                return path[::-1]
        return None
    def edge_yielder(self):
        u = [0] * len(self.edge_alive); v = [0] * len(self.edge_alive)
        for x in range(self.order()):
            adj = self.adjacent[x]
            ids = self.edge_ids[x]
            for k in range(len(adj)):
                id = ids[k]
                u[id] = min(x, adj[k])
                v[id] = max(x, adj[k])
        for id in range(len(self.edge_alive)):
            if self.edge_alive[id]:
                yield (u[id], v[id])
    def edge_yielder_with_index(self):
        u = [0] * len(self.edge_alive); v = [0] * len(self.edge_alive)
        for x in range(self.order()):
            adj = self.adjacent[x]
            ids = self.edge_ids[x]
            for k in range(len(adj)):
                id = ids[k]
                u[id] = min(x, adj[k])
                v[id] = max(x, adj[k])
        for id in range(len(self.edge_alive)):
            if self.edge_alive[id]:
                yield (id, u[id], v[id])
def Lowlink(G: Graph, mode=0):
    """ G の ord, lowlink を求める.
    G: Graph
    output: (ord, lowlink)
    """
    from collections import deque
    N=G.vertex_count()
    ord=[-1]*N; low=[-1]*N
    flag=[0]*N
    adj=G.adjacent
    parent=[-1]*N
    #BFSパート
    for v in range(N):
        if flag[v]:
            continue
        k=0
        S=deque([v])
        T=[]
        while S:
            u=S.pop()
            if flag[u]:
                continue
            T.append(u)
            ord[u]=k
            k+=1
            flag[u]=1
            for w in G.neighborhood(u):
                if not flag[w]:
                    S.append(w)
                    parent[w]=u
        for u in T:
            low[u]=ord[u]
        for w in T[:0:-1]:
            for x in adj[w]:
                if w==v or x!=parent[w]:
                    low[w]=min(low[w],low[x],ord[x])
    if mode==0:
        return ord, low
    else:
        return ord, low, parent
#橋列挙
def Bridge(G: Graph):
    """ G にある橋の id を列挙する.
    G: Graph
    """
    ord, low = Lowlink(G)
    return [id for id, u, v in G.edge_yielder_with_index() if (ord[u] < low[v]) or (ord[v] < low[u])]
#==================================================
def solve():
    N = int(input())
    G = Graph(N + 1, 1)
    for j in range(1, N + 1):
        u, v = map(int, input().split())
        G.add_edge(u, v)
    bridges = set(Bridge(G))
    anti_bridges = [j for j in range(1, N + 1) if j not in bridges]
    return f'{len(anti_bridges)}\n{" ".join(map(str, anti_bridges))}'
#==================================================
import sys
input=sys.stdin.readline
write=sys.stdout.write
print(solve())
            
            
            
        