結果

問題 No.2628 Shrinkage
ユーザー ponjuiceponjuice
提出日時 2024-02-16 21:51:30
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,551 bytes
コンパイル時間 4,487 ms
コンパイル使用メモリ 271,532 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-09-28 20:05:41
合計ジャッジ時間 5,375 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 RE -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 RE -
testcase_13 RE -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 RE -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;

//高速化 
struct ponjuice{ponjuice(){cin.tie(0);ios::sync_with_stdio(0);cout<<fixed<<setprecision(20);}}PonJuice;
//#define endl '\n' //インタラクティブ問題の時は消す

//型
using ll = long long;
using ld = long double;
using mint = modint998244353;//1000000007;
template<class T>using vc = vector<T>; template<class T>using vvc = vc<vc<T>>; template<class T>using vvvc = vvc<vc<T>>;
using vi = vc<int>;  using vvi = vvc<int>;  using vvvi = vvvc<int>;
using vl = vc<ll>;   using vvl = vvc<ll>;   using vvvl = vvvc<ll>;
using pi = pair<int, int>;  using pl = pair<ll, ll>;
using ull = unsigned ll;
template<class T>using priq = priority_queue<T>;
template<class T>using priqg = priority_queue<T, vc<T>, greater<T>>;

// for文
#define overload4(a, b, c, d, e, ...) e
#define rep1(n)             for(ll i = 0; i < n; i++)
#define rep2(i, n)          for(ll i = 0; i < n; i++)
#define rep3(i, a, b)       for(ll i = a; i < b; i++)
#define rep4(i, a, b, step) for(ll i = a; i < b; i+= step)
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define per1(n)             for(ll i = n-1; i >= 0; i--)
#define per2(i, n)          for(ll i = n-1; i >= 0; i--)
#define per3(i, a, b)       for(ll i = b-1; i >= a; i--)
#define per4(i, a, b, step) for(ll i = b-1; i >= a; i-= step)
#define per(...) overload4(__VA_ARGS__, per4, per3, per2, per1)(__VA_ARGS__)
#define fore1(a)       for(auto&& i : a)	
#define fore2(i,a)     for(auto&& i : a)
#define fore3(x,y,a)   for(auto&& [x, y] : a)
#define fore4(x,y,z,a) for(auto&& [x, y, z] : a)
#define fore(...) overload4(__VA_ARGS__, fore4, fore3, fore2, fore1)(__VA_ARGS__)

//関数
#define mp make_pair
#define mt make_tuple
#define a first
#define b second
#define pb emplace_back
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define si(x) (ll)(x).size()
template<class S, class T>inline bool chmax(S& a, T b){return a < b && ( a = b , true);}
template<class S, class T>inline bool chmin(S& a, T b){return a > b && ( a = b , true);}
template<class T>void uniq(vc<T>&a){sort(all(a));a.erase(unique(all(a)),a.end());}
template<class T>vc<T> operator++(vc<T>&v,signed){auto res = v;fore(e,v)e++;return res;}
template<class T>vc<T> operator--(vc<T>&v,signed){auto res = v;fore(e,v)e--;return res;}
template<class T>vc<T> operator++(vc<T>&v){fore(e,v)e++;return v;}
template<class T>vc<T> operator--(vc<T>&v){fore(e,v)e--;return v;}

//入出力(operator)
template<int T>istream&operator>>(istream&is,static_modint<T>&a){ll v;is>>v;a=v;return is;}
istream&operator>>(istream&is,modint&a){ll v;cin>>v;a=v;return is;}
template<class S,class T>istream&operator>>(istream&is,pair<S,T>&a){is>>a.a>>a.b;return is;}
template<class T>istream&operator>>(istream&is,vc<T>&a){fore(e,a)is>>e;return is;}

template<int T>ostream&operator<<(ostream&os,static_modint<T>a){return os<<a.val();}
ostream&operator<<(ostream&os,modint a){return os<<a.val();}
template<class S,class T>ostream&operator<<(ostream&os,pair<S,T>&a){return os<<a.a<<" "<<a.b;}
template<class T>ostream&operator<<(ostream&os,set<T>&a){fore(it,a){os<<it<<" ";}return os;}
template<class T>ostream&operator<<(ostream&os,multiset<T>&a){fore(it,a){os<<it<<" ";}return os;}
template<class S,class T>ostream&operator<<(ostream&os,map<S,T>&a){fore(x,y,a){os<<x<<" "<<y<<"\n";}return os;}
template<class T>ostream&operator<<(ostream&os,unordered_set<T>&a){fore(it,a){os<<it<<" ";}return os;}
template<class S,class T>ostream&operator<<(ostream&os,unordered_map<S,T>&a){fore(x,y,a){os<<x<<" "<<y<<"\n";}return os;}
template<class T>ostream&operator<<(ostream&os,vc<T>&a){fore(e,a)os<<e<<" ";return os;}
template<class T>ostream&operator<<(ostream&os,vvc<T>&a){fore(e,a)os<<e<<"\n";return os;}

//入出力(関数)
vi readvi(ll n){vi a(n);cin>>a;return a;}
vl readvl(ll n){vl a(n);cin>>a;return a;}
vvi readg(ll n,ll m,bool bidirected=true){vvi g(n);rep(i,m){ll a,b;cin>>a>>b;a--;b--;g[a].pb(b);if(bidirected)g[b].pb(a);}return g;}
vvc<pi>readgc(ll n,ll m,bool bidirected=true){vvc<pi> g(n);rep(i,m){ll a,b,c;cin>>a>>b>>c;a--;b--;g[a].pb(b,c);if(bidirected)g[b].pb(a,c);}return g;}
vvi readt(ll n,bool bidirected=true){return readg(n,n-1,bidirected);}
vvc<pi> readtc(ll n,bool bidirected=true){return readgc(n,n-1,bidirected);}

inline void yes(){cout << "Yes\n";}
inline void no(){cout << "No\n";}
inline void yesno(bool y = true){if(y)yes();else no();}
inline void print(){cout<<endl;}
template<class T>inline void print(T a){cout<<a<<endl;}
template<class T,class... Ts>inline void print(T a,Ts ...b){cout<<a;(cout<<...<<(cout<<' ',b));cout<<endl;}

//定数
constexpr ll mod = 998244353;
constexpr ll minf=-(1<<29);
constexpr ll inf=(1<<29);
constexpr ll MINF=-(1LL<<60);
constexpr ll INF=(1LL<<60);
#define equals(a, b) (abs((a) - (b)) < EPS)
const int dx[4] ={-1, 0, 1, 0};
const int dy[4] ={ 0, 1, 0,-1};
const int dx8[8] ={-1,-1,-1, 0, 1, 1, 1, 0};
const int dy8[8] ={-1, 0, 1, 1, 1, 0,-1,-1};

void solve();
int main() {
	int t = 1;
    cin >>t;
    while(t--)solve();
}

#include<complex>
#include<vector>
#include<iostream>
using namespace std;

using Real = ll;
using Point = complex<Real>;
const Real EPS = 1e-8, PI = acos(-1);

// 多分いらない入出力
istream &operator>>(istream &is, Point& p) {
  Real a, b;
  is >> a >> b;
  p = Point(a, b);
  return is;
}
ostream &operator<<(ostream &os, Point p) {
  return os << fixed << p.real() << " " << p.imag();
}
//////////////////

Point operator*(Point p, Real d) {
  return Point(real(p) * d, imag(p) * d);
}

inline bool equal(Real a, Real b){
    return fabs(a - b) < EPS;
}

Point unit(Point a) {
    return a / abs(a);
}

Point normal(Point a) {
    return a * Point(0, 1);
}

Point normalUnit(Point a) {
    return unit(normal(a));
}

Real dot(Point a, Point b){
    return a.real() * b.real() + a.imag() * b.imag(); 
}

Real cross(Point a, Point b){
    return (a.real() * b.imag() - a.imag() * b.real());
}

Point rotate(Point a, double theta){
    return Point(cos(theta) * a.real() - sin(theta) * a.imag(),
                 sin(theta) * a.real() + cos(theta) * a.imag());
}

Real radianToDegree(Real r) {
    return r * 180 / PI;
}

Real degreeToRadian(Real d) {
    return d * PI / 180;
}

struct Line{
    Point a,b;

    Line() = default;

    Line(Point A, Point B) : a(A), b(B) {}

    // ax + by = c
    Line(Real A, Real B, Real C){
        if(equal(A, 0)) a = Point(0, C / B), b = Point(1, C / B);
        else if(equal(B, 0)) b = Point(C / A, 0), b = Point(C / A, 1);
        else a = Point(0, C / B), b = Point(C / A, 0);
    }

    friend ostream &operator<<(ostream &os, Line &p) {
        return os << p.a << " to " << p.b;
    }

    friend istream &operator>>(istream &is, Line &a) {
        return is >> a.a >> a.b;
    }
};

using Segment = Line;

struct Circle{
    Point p;
    Real r;

    Circle() = default;

    Circle(Point p, Real r) : p(p), r(r) {}
};

// 点pから線lに垂線を下ろした時の交点
Point projection(Line l, Point p){
    Real t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a);
    return l.a + (l.b - l.a) * t;
}

int ccw(Point a, Point b, Point c){
    b -= a;
    c -= a;
    // 反時計回り
    if(cross(b, c) > EPS) return 1;
    // 時計回り
    if(cross(b, c) < -EPS) return -1;
    // c-a-bの順番で点がある
    if(dot(b, c) < 0) return -2;
    // a-b-cの順番で点がある
    if(norm(b) < norm(c)) return 2;
    // a-b の間にcがある
    return 0;
}

bool isParallel(Line a, Line b){
    return equal(cross(a.b - a.a, b.b - b.a), 0);
}

bool isOrthogonal(Line a, Line b){
    return equal(dot(a.b - a.a, b.b - b.a), 0);
}

bool IsIntersect(Segment s, Segment t){
    return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}

Point crossPoint(Line s, Line t){
    Real d1 = cross(s.b - s.a, t.b - t.a);
    Real d2 = cross(s.b - s.a, s.b - t.a);
    if(equal(d1, 0) && equal(d2, 0)){
        if( ccw(t.a, t.b, s.a) == 0) return s.a;
        if( ccw(t.a, t.b, s.b) == 0) return s.b;
        if( ccw(s.a, s.b, t.a) == 0) return t.a;
        if( ccw(s.a, s.b, t.b) == 0) return t.b;
    }

    return t.a + (t.b - t.a) * (d2 / d1);
}

Real distance(Segment l, Point p){
    if(dot(l.b - l.a, p - l.a) < EPS) return abs(p - l.a);
    if(dot(l.a - l.b, p - l.b) < EPS) return abs(p - l.b);
    return abs(cross(l.b - l.a, p - l.a)) / abs(l.b - l.a);
}

Real distance(Segment s, Segment t){
    if(IsIntersect(s,t)) return 0;
    Real res = distance(s,t.a);
    res = min(res, distance(s, t.b));
    res = min(res, distance(t, s.a));
    res = min(res, distance(t, s.b));
    return res;
}

Real area(vector<Point>& p){
    Real res = 0;
    int n = p.size();
    for(int i = 0; i < n - 1; i++){
        res += cross(p[i], p[i+1]);
    }
    res += cross(p[n-1],p[0]);

    return res * 0.5;
}

bool isConvex(vector<Point>& p){
    bool res = true;
    int n = p.size();
    for(int i = 0; i < n; i++) {
        if(cross(p[(i+1)%n]-p[i], p[(i+2)%n] - p[(i+1)%n]) < -EPS){
            res = false;
        }
    }
    return res;
}

void solve(){
    Point a,b,c,d;
    cin >> a >> b >> c >> d;
    Line q(a,c),w(b,d);
    if(isParallel(q,w) || norm(a-b) < norm(b-d)){
        no();
        return;
    }
    if(q.b != w.b && distance(q,w) == 0){
        no();
        return;
    }
    yesno(abs(c.real() - d.real()) * abs(a.imag() - b.imag()) == abs(c.imag() - d.imag()) * abs(a.real() - b.real()) );
}
0