結果
問題 | No.2632 Center of Three Points in Lp Norm |
ユーザー | Aeren |
提出日時 | 2024-02-16 22:19:41 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,380 bytes |
コンパイル時間 | 2,442 ms |
コンパイル使用メモリ | 248,416 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-09-28 20:54:51 |
合計ジャッジ時間 | 5,690 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 20 ms
6,816 KB |
testcase_01 | AC | 21 ms
6,820 KB |
testcase_02 | AC | 19 ms
6,816 KB |
testcase_03 | AC | 20 ms
6,820 KB |
testcase_04 | AC | 19 ms
6,816 KB |
testcase_05 | WA | - |
testcase_06 | AC | 19 ms
6,820 KB |
testcase_07 | AC | 19 ms
6,816 KB |
testcase_08 | AC | 19 ms
6,816 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | AC | 19 ms
6,816 KB |
testcase_14 | AC | 19 ms
6,820 KB |
testcase_15 | AC | 19 ms
6,816 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 19 ms
6,820 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 21 ms
6,820 KB |
testcase_25 | WA | - |
testcase_26 | AC | 20 ms
6,820 KB |
testcase_27 | WA | - |
testcase_28 | AC | 20 ms
6,816 KB |
testcase_29 | AC | 19 ms
6,820 KB |
testcase_30 | AC | 20 ms
6,816 KB |
testcase_31 | AC | 19 ms
6,820 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | AC | 20 ms
6,816 KB |
testcase_37 | AC | 19 ms
6,820 KB |
ソースコード
// #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif template<class T> struct point{ T x{}, y{}; point(){ } template<class U> point(const point<U> &otr): x(otr.x), y(otr.y){ } template<class U, class V> point(U x, V y): x(x), y(y){ } template<class U> point(const array<U, 2> &p): x(p[0]), y(p[1]){ } friend istream &operator>>(istream &in, point &p){ return in >> p.x >> p.y; } friend ostream &operator<<(ostream &out, const point &p){ return out << "{" << p.x << ", " << p.y << "}"; } template<class U> operator array<U, 2>() const{ return {x, y}; } T operator*(const point &otr) const{ return x * otr.x + y * otr.y; } T operator^(const point &otr) const{ return x * otr.y - y * otr.x; } point operator+(const point &otr) const{ return {x + otr.x, y + otr.y}; } point &operator+=(const point &otr){ return *this = *this + otr; } point operator-(const point &otr) const{ return {x - otr.x, y - otr.y}; } point &operator-=(const point &otr){ return *this = *this - otr; } point operator-() const{ return {-x, -y}; } #define scalarop_l(op) friend point operator op(const T &c, const point &p){ return {c op p.x, c op p.y}; } scalarop_l(+) scalarop_l(-) scalarop_l(*) scalarop_l(/) #define scalarop_r(op) point operator op(const T &c) const{ return {x op c, y op c}; } scalarop_r(+) scalarop_r(-) scalarop_r(*) scalarop_r(/) #define scalarapply(applyop, op) point &operator applyop(const T &c){ return *this = *this op c; } scalarapply(+=, +) scalarapply(-=, -) scalarapply(*=, *) scalarapply(/=, /) #define compareop(op) bool operator op(const point &otr) const{ return pair<T, T>(x, y) op pair<T, T>(otr.x, otr.y); } compareop(>) compareop(<) compareop(>=) compareop(<=) compareop(==) compareop(!=) #undef scalarop_l #undef scalarop_r #undef scalarapply #undef compareop double norm() const{ return sqrt(x * x + y * y); } long double norm_l() const{ return sqrtl(x * x + y * y); } T squared_norm() const{ return x * x + y * y; } // [0, 2 * pi] double angle() const{ auto a = atan2(y, x); if(a < 0) a += 2 * acos(-1); return a; } // [0, 2 * pi] long double angle_l() const{ auto a = atan2(y, x); if(a < 0) a += 2 * acosl(-1); return a; } point<double> unit() const{ return point<double>(x, y) / norm(); } point<long double> unit_l() const{ return point<long double>(x, y) / norm_l(); } point perp() const{ return {-y, x}; } point<double> normal() const{ return perp().unit(); } point<long double> normal_l() const{ return perp().unit_l(); } point<double> rotate(double theta) const{ return {x * cos(theta) - y * sin(theta), x * sin(theta) + y * cos(theta)}; } point<long double> rotate_l(double theta) const{ return {x * cosl(theta) - y * sinl(theta), x * sinl(theta) + y * cosl(theta)}; } point reflect_x() const{ return {x, -y}; } point reflect_y() const{ return {-x, y}; } point reflect(const point &o = {}) const{ return {2 * o.x - x, 2 * o.y - y}; } bool parallel_to(const point &q) const{ if constexpr(is_floating_point_v<T>) return abs(*this ^ q) <= 1e-9; else return abs(*this ^ q) == 0; } }; template<class T, class U> point<double> lerp(const point<T> &p, const point<U> &q, double t){ return point<double>(p) * (1 - t) + point<double>(q) * t; } template<class T, class U> point<long double> lerp_l(const point<T> &p, const point<U> &q, long double t){ return point<long double>(p) * (1 - t) + point<long double>(q) * t; } template<class T> double distance(const point<T> &p, const point<T> &q){ return (p - q).norm(); } template<class T> long double distance_l(const point<T> &p, const point<T> &q){ return (p - q).norm_l(); } template<class T> T squared_distance(const point<T> &p, const point<T> &q){ return (p - q).squared_norm(); } template<class T> T doubled_signed_area(const point<T> &p, const point<T> &q, const point<T> &r){ return q - p ^ r - p; } template<class T> T doubled_signed_area(const vector<point<T>> &a){ if(a.empty()) return 0; T res = a.back() ^ a.front(); for(auto i = 1; i < (int)a.size(); ++ i) res += a[i - 1] ^ a[i]; return res; } // [-pi, pi] template<class T> double angle(const point<T> &p, const point<T> &q){ return atan2(p ^ q, p * q); } // [-pi, pi] template<class T> long double angle_l(const point<T> &p, const point<T> &q){ return atan2l(p ^ q, p * q); } // Check if p->q->r is sorted by angle with respect to the origin template<class T> bool is_sorted_by_angle(const point<T> &origin, const point<T> &p, const point<T> &q, const point<T> &r){ T x = p - origin ^ q - origin; T y = q - origin ^ r - origin; if(x >= 0 && y >= 0) return true; if(x < 0 && y < 0) return false; return (p - origin ^ r - origin) < 0; } // Check if a is sorted by angle with respect to the origin template<class T> bool is_sorted_by_angle(const point<T> &origin, const vector<point<T>> &a){ for(auto i = 0; i < (int)a.size() - 2; ++ i) if(!is_sorted_by_angle(origin, a[i], a[i + 1], a[i + 2])) return false; return true; } template<class T> bool counterclockwise(const point<T> &p, const point<T> &q, const point<T> &r){ return doubled_signed_area(p, q, r) > 0; } template<class T> bool clockwise(const point<T> &p, const point<T> &q, const point<T> &r){ return doubled_signed_area(p, q, r) < 0; } template<class T> bool colinear(const point<T> &p, const point<T> &q, const point<T> &r){ return doubled_signed_area(p, q, r) == 0; } template<class T> bool colinear(const vector<point<T>> &a){ int i = 1; while(i < (int)a.size() && a[0] == a[i]) ++ i; if(i == (int)a.size()) return true; for(auto j = i + 1; j < (int)a.size(); ++ j) if(!colinear(a[0], a[i], a[j])) return false; return true; } point<double> polar(double x, double theta){ assert(x >= 0); return {x * cos(theta), x * sin(theta)}; } point<long double> polar_l(long double x, long double theta){ assert(x >= 0); return {x * cosl(theta), x * sinl(theta)}; } // T must be able to hold the fourth power of max coordinate // returns [a, b, c, and d lies in a circle] template<class T> bool concircular(point<T> a, point<T> b, point<T> c, const point<T> &d){ a -= d, b -= d, c -= d; return a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b) == 0; } // T must be able to hold the fourth power of max coordinate // returns [d lies in the interior of the circle defined by a, b, c] template<class T> bool inside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){ a -= d, b -= d, c -= d; return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? 1 : -1) > 0; } // T must be able to hold the fourth power of max coordinate // returns [d lies in the exterior of the circle defined by a, b, c] template<class T> bool outside_of_circle(point<T> a, point<T> b, point<T> c, const point<T> &d){ a -= d, b -= d, c -= d; return (a.squared_norm() * (b ^ c) + b.squared_norm() * (c ^ a) + c.squared_norm() * (a ^ b)) * (doubled_signed_area(a, b, c) > 0 ? -1 : 1) > 0; } using pointint = point<int>; using pointll = point<long long>; using pointlll = point<__int128_t>; using pointd = point<double>; using pointld = point<long double>; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); cout << fixed << setprecision(15); double k; pointd a, b, c; cin >> k >> a >> b >> c; pointd dx = (b - a).unit(); pointd dy = dx.normal(); if(dy * c < 0){ dy = -dy; } auto dist = [&](pointd p, pointd q)->double{ return pow(abs(p.x - q.x), k) + pow(abs(p.y - q.y), k); }; auto search_x = [&](double y)->double{ double low = -1e18, high = 1e18; for(auto rep = 400; rep; -- rep){ double mid = (low + high) / 2; dist(a, dx * mid + dy * y) > dist(b, dx * mid + dy * y) ? high = mid : low = mid; } return (low + high) / 2; }; auto search_y = [&]()->double{ double low = -1e18, high = 1e18; for(auto rep = 400; rep; -- rep){ double mid = (low + high) / 2; double x = search_x(mid); dist(a, dx * x + dy * mid) > dist(c, dx * x + dy * mid) ? high = mid : low = mid; } return (low + high) / 2; }; double y = search_y(); double x = search_x(y); auto res = dx * x + dy * y; cout << res.x << " " << res.y << "\n"; return 0; } /* */