結果

問題 No.2632 Center of Three Points in Lp Norm
ユーザー ecotteaecottea
提出日時 2024-02-17 16:32:10
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 13,954 bytes
コンパイル時間 4,681 ms
コンパイル使用メモリ 272,936 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-09-28 23:47:12
合計ジャッジ時間 50,182 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,952 ms
6,816 KB
testcase_01 AC 1,952 ms
6,820 KB
testcase_02 AC 1,952 ms
6,816 KB
testcase_03 AC 1,951 ms
6,820 KB
testcase_04 AC 40 ms
6,820 KB
testcase_05 AC 41 ms
6,820 KB
testcase_06 AC 1,952 ms
6,816 KB
testcase_07 AC 1,953 ms
6,816 KB
testcase_08 AC 41 ms
6,816 KB
testcase_09 AC 1,952 ms
6,820 KB
testcase_10 AC 42 ms
6,820 KB
testcase_11 WA -
testcase_12 AC 1,952 ms
6,816 KB
testcase_13 AC 1,951 ms
6,820 KB
testcase_14 AC 1,952 ms
6,816 KB
testcase_15 AC 42 ms
6,816 KB
testcase_16 AC 41 ms
6,820 KB
testcase_17 AC 147 ms
6,820 KB
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 AC 1,952 ms
6,816 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 41 ms
6,816 KB
testcase_25 AC 1,952 ms
6,816 KB
testcase_26 AC 1,952 ms
6,820 KB
testcase_27 AC 43 ms
6,820 KB
testcase_28 WA -
testcase_29 AC 53 ms
6,816 KB
testcase_30 AC 53 ms
6,816 KB
testcase_31 AC 41 ms
6,824 KB
testcase_32 AC 41 ms
6,816 KB
testcase_33 AC 42 ms
6,820 KB
testcase_34 AC 18 ms
6,816 KB
testcase_35 AC 40 ms
6,820 KB
testcase_36 AC 1,952 ms
6,816 KB
testcase_37 AC 40 ms
6,816 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:39,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54,
                 from main.cpp:7:
In member function 'std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(double) [with _CharT = char; _Traits = std::char_traits<char>]',
    inlined from 'void WA2()' at main.cpp:290:23:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:221:25: warning: 'yy' may be used uninitialized [-Wmaybe-uninitialized]
  221 |       { return _M_insert(__f); }
      |                ~~~~~~~~~^~~~~
main.cpp: In function 'void WA2()':
main.cpp:253:20: note: 'yy' was declared here
  253 |         double xx, yy; double dif_min = INF;
      |                    ^~
In member function 'std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(double) [with _CharT = char; _Traits = std::char_traits<char>]',
    inlined from 'void WA2()' at main.cpp:290:10:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:221:25: warning: 'xx' may be used uninitialized [-Wmaybe-uninitialized]
  221 |       { return _M_insert(__f); }
      |                ~~~~~~~~~^~~~~
main.cpp: In function 'void WA2()':
main.cpp:253:16: note: 'xx' was declared here
  253 |         double xx, yy; double dif_min = INF;
      |                ^~

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【黄金分割探索(実数,下に凸)】O(log((r - l) / EPS))
/*
* 全域で狭義に下に凸な関数 f(x) の開区間 (l..r) における最小値を与える x を返す.
*/
template <class D, class FUNC>
D golden_search_lc(D l, D r, const FUNC& f, D EPS = 1e-12) {
	// verify : https://atcoder.jp/contests/arc049/tasks/arc049_b

	constexpr D phi = 1.618033988749895; // 黄金数

	int L = max((int)(log((r - l) / EPS) / log(phi)), 1);

	// l, m1, m2, r の順で区間を φ : 1 : φ に内分する点
	D m1 = (l * (1 + phi) + r * phi) / (2 * phi + 1);
	D m2 = (l * phi + r * (1 + phi)) / (2 * phi + 1);

	// 内分点における関数値の計算
	D v1 = f(m1);
	D v2 = f(m2);

	// 絶対誤差か相対誤差が EPS 以下になるまで
	rep(hoge, L) {
		// 左の内分点での値の方が小さければ,次の区間は左側をとる.
		if (v1 < v2) {
			// 右の内分点を新たに右端とする.
			r = m2;

			// 左の内分点を新たに右の内分点とする.
			m2 = m1;
			v2 = v1;

			// 左の内分点を新たに計算する.
			m1 = (l * (1 + phi) + r * phi) / (2 * phi + 1);
			v1 = f(m1);
		}
		// 右の内分点での値の方が小さければ,次の区間は右側をとる.
		else {
			// 左の内分点を新たに左端とする.
			l = m1;

			// 右の内分点を新たに左の内分点とする.
			m1 = m2;
			v1 = v2;

			// 右の内分点を新たに計算する.
			m2 = (l * phi + r * (1 + phi)) / (2 * phi + 1);
			v2 = f(m2);
		}
	}

	// 最後の候補を比較し,小さかった方の x を返す.
	return (v1 < v2) ? m1 : m2;

	/* f の定義の雛形
	auto f = [&](double x) {
		return x;
	};
	*/
}


//【ランダム三分探索(実数,下に凸)】O(log((r - l) / EPS))
/*
* 全域で狭義に下に凸な関数 f(x) の開区間 (l, r) における最小値を与える x を返す.
* 下に凸じゃなくても運が良ければ正しい x を返す.
*/
template <class FUNC>
double random_ternary_search_lc(double l, double r, const FUNC& f, double EPS = 1e-12) {
	// verify : https://atcoder.jp/contests/abc130/tasks/abc130_f

	static bool first_call = true;

	static mt19937 mt;
	static uniform_real_distribution<> rnd(0, 1);
	if (first_call) {
		mt.seed((int)time(NULL));
		first_call = false;
	}

	double m1 = l, m2 = r;

	// 絶対誤差か相対誤差が EPS 以下になるまで
	while (r - l > EPS && r - l > EPS * (r + l) / 2) {
		m1 = l + (r - l) * rnd(mt);
		m2 = l + (r - l) * rnd(mt);
		if (m1 > m2) swap(m1, m2);

		// 左の内分点での値の方が小さければ,次の区間は左側をとる.
		if (f(m1) < f(m2)) {
			r = m2;
		}
		// 右の内分点での値の方が小さければ,次の区間は右側をとる.
		else {
			l = m1;
		}
	}

	// 最後の候補を比較し,小さかった方の x を返す.
	return (f(m1) < f(m2)) ? m1 : m2;

	/* f の定義の雛形
	auto f = [&](double x) {
		return x;
	};
	*/
}


// たぶん細い谷に捕まってる
void WA() {
	using D = long double;

	D p, ax, ay, bx, by, cx, cy;
	cin >> p >> ax >> ay >> bx >> by >> cx >> cy;

	auto f = [&](D x) {
		auto g = [&](D y) {
			D na = pow(pow(abs(ax - x), p) + pow(abs(ay - y), p), 1 / p);
			D nb = pow(pow(abs(bx - x), p) + pow(abs(by - y), p), 1 / p);
			D nc = pow(pow(abs(cx - x), p) + pow(abs(cy - y), p), 1 / p);
			return max({ na, nb, nc }) - min({ na, nb, nc });
		};
		auto y = golden_search_lc(-1e6L, 1e6L, g, 1e-18L);

		return g(y);
	};

	auto x = golden_search_lc(-1e6L, 1e6L, f, 1e-18L);
	dump(x, f(x));

	auto g = [&](D y) {
		D na = pow(pow(abs(ax - x), p) + pow(abs(ay - y), p), 1 / p);
		D nb = pow(pow(abs(bx - x), p) + pow(abs(by - y), p), 1 / p);
		D nc = pow(pow(abs(cx - x), p) + pow(abs(cy - y), p), 1 / p);
		return max({ na, nb, nc }) - min({ na, nb, nc });
	};
	auto y = golden_search_lc(-1e6L, 1e6L, g, 1e-18L);
	dump(y, g(y));

	cout << x << " " << y << endl;
}


void WA2() {
	auto start = chrono::system_clock::now();

	double p, ax, ay, bx, by, cx, cy;
	cin >> p >> ax >> ay >> bx >> by >> cx >> cy;

	double xx, yy; double dif_min = INF;

	while (1) {
		auto f = [&](double x) {
			auto g = [&](double y) {
				double na = pow(abs(ax - x), p) + pow(abs(ay - y), p);
				double nb = pow(abs(bx - x), p) + pow(abs(by - y), p);
				double nc = pow(abs(cx - x), p) + pow(abs(cy - y), p);
				return max({ na, nb ,nc }) - min({ na, nb, nc });
			};
			auto y = random_ternary_search_lc(-INF, INF, g);

			return g(y);
		};

		auto x = random_ternary_search_lc(-INF, INF, f);
		dump(x, f(x));

		auto g = [&](double y) {
			double na = pow(abs(ax - x), p) + pow(abs(ay - y), p);
			double nb = pow(abs(bx - x), p) + pow(abs(by - y), p);
			double nc = pow(abs(cx - x), p) + pow(abs(cy - y), p);
			return max({ na, nb ,nc }) - min({ na, nb, nc });
		};
		auto y = random_ternary_search_lc(-INF, INF, g);
		dump(y, g(y));

		if (chmin(dif_min, g(y))) {
			xx = x;
			yy = y;
		}

		auto now = chrono::system_clock::now();
		auto msec = chrono::duration_cast<chrono::milliseconds>(now - start).count();
		if (msec >= 1950) break;
	}

	cout << xx << " " << yy << endl;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	auto start = chrono::system_clock::now();

	using D = long double;

	D p, ax, ay, bx, by, cx, cy;
	cin >> p >> ax >> ay >> bx >> by >> cx >> cy;

	D ox = 0, oy = 0;
	
	// 初期解を三分探索で雑に見つける.
	{
		auto f = [&](D x) {
			auto g = [&](D y) {
				D na = pow(pow(abs(ax - x), p) + pow(abs(ay - y), p), 1 / p);
				D nb = pow(pow(abs(bx - x), p) + pow(abs(by - y), p), 1 / p);
				D nc = pow(pow(abs(cx - x), p) + pow(abs(cy - y), p), 1 / p);
				return max({ na, nb, nc }) - min({ na, nb, nc });
			};
			auto y = golden_search_lc(-1e6L, 1e6L, g, 1e-18L);

			return g(y);
		};

		auto x = golden_search_lc(-1e6L, 1e6L, f, 1e-18L);
		dump(x, f(x));

		auto g = [&](D y) {
			D na = pow(pow(abs(ax - x), p) + pow(abs(ay - y), p), 1 / p);
			D nb = pow(pow(abs(bx - x), p) + pow(abs(by - y), p), 1 / p);
			D nc = pow(pow(abs(cx - x), p) + pow(abs(cy - y), p), 1 / p);
			return max({ na, nb, nc }) - min({ na, nb, nc });
		};
		auto y = golden_search_lc(-1e6L, 1e6L, g, 1e-18L);
		dump(y, g(y));

		ox = x;
		oy = y;
	}
	
	auto Power = [](D x, D p) { return pow(x, p); };
	auto Abs = [](D x) { return abs(x); };
	auto Derivative_1_Abs = [](D x) { return x > 0 ? 1.L : -1.L; };

	// 勾配降下法
	while (1) {
		dump("o=", ox, oy);

		D dx = 2 * (Power(Abs(ax - ox), p) - Power(Abs(bx - ox), p) + Power(Abs(ay - oy), p) - Power(Abs(by - oy), p)) *
			(-(p * Power(Abs(ax - ox), -1 + p) * Derivative_1_Abs(ax - ox)) +
				p * Power(Abs(bx - ox), -1 + p) * Derivative_1_Abs(bx - ox)) +
			2 * (Power(Abs(ax - ox), p) - Power(Abs(cx - ox), p) + Power(Abs(ay - oy), p) - Power(Abs(cy - oy), p)) *
			(-(p * Power(Abs(ax - ox), -1 + p) * Derivative_1_Abs(ax - ox)) +
				p * Power(Abs(cx - ox), -1 + p) * Derivative_1_Abs(cx - ox)) +
			2 * (Power(Abs(bx - ox), p) - Power(Abs(cx - ox), p) + Power(Abs(by - oy), p) - Power(Abs(cy - oy), p)) *
			(-(p * Power(Abs(bx - ox), -1 + p) * Derivative_1_Abs(bx - ox)) +
				p * Power(Abs(cx - ox), -1 + p) * Derivative_1_Abs(cx - ox));
		D dy = 2 * (Power(Abs(ax - ox), p) - Power(Abs(bx - ox), p) + Power(Abs(ay - oy), p) - Power(Abs(by - oy), p)) *
			(-(p * Power(Abs(ay - oy), -1 + p) * Derivative_1_Abs(ay - oy)) +
				p * Power(Abs(by - oy), -1 + p) * Derivative_1_Abs(by - oy)) +
			2 * (Power(Abs(ax - ox), p) - Power(Abs(cx - ox), p) + Power(Abs(ay - oy), p) - Power(Abs(cy - oy), p)) *
			(-(p * Power(Abs(ay - oy), -1 + p) * Derivative_1_Abs(ay - oy)) +
				p * Power(Abs(cy - oy), -1 + p) * Derivative_1_Abs(cy - oy)) +
			2 * (Power(Abs(bx - ox), p) - Power(Abs(cx - ox), p) + Power(Abs(by - oy), p) - Power(Abs(cy - oy), p)) *
			(-(p * Power(Abs(by - oy), -1 + p) * Derivative_1_Abs(by - oy)) +
				p * Power(Abs(cy - oy), -1 + p) * Derivative_1_Abs(cy - oy));
		dump(dx, dy);
		
		D nd = sqrt(dx * dx + dy * dy);
		if (nd < 1e-9) break;
		dx /= -nd;
		dy /= -nd;

		auto f = [&](double len) {
			D nox = ox + len * dx;
			D noy = oy + len * dy;

			D val = Power(Power(Abs(ax - nox), p) - Power(Abs(bx - nox), p) + Power(Abs(ay - noy), p) - Power(Abs(by - noy), p), 2) +
				Power(Power(Abs(ax - nox), p) - Power(Abs(cx - nox), p) + Power(Abs(ay - noy), p) - Power(Abs(cy - noy), p), 2) +
				Power(Power(Abs(bx - nox), p) - Power(Abs(cx - nox), p) + Power(Abs(by - noy), p) - Power(Abs(cy - noy), p), 2);

			return val;
		};
		auto len = golden_search_lc(0.L, 1.4e6L, f);
		dump(len);

		ox += len * dx;
		oy += len * dy;

		auto now = chrono::system_clock::now();
		auto msec = chrono::duration_cast<chrono::milliseconds>(now - start).count();
		if (msec >= 1950) break;
	}

	cout << ox << " " << oy << endl;
}
0