結果

問題 No.2628 Shrinkage
ユーザー Re0denXRe0denX
提出日時 2024-02-17 16:34:41
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 19,424 bytes
コンパイル時間 4,387 ms
コンパイル使用メモリ 280,456 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-09-28 23:47:18
合計ジャッジ時間 5,295 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

/**
 * @brief Scanner(高速入力)
 */
struct Scanner {
public:
  explicit Scanner(FILE *fp) : fp(fp) {}

  template <typename T, typename... E> void read(T &t, E &...e) {
    read_single(t);
    read(e...);
  }

private:
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  FILE *fp = nullptr;
  char *st = line;
  char *ed = line;

  void read() {}

  static inline bool is_space(char c) { return c <= ' '; }

  void reread() {
    ptrdiff_t len = ed - st;
    memmove(line, st, len);
    char *tmp = line + len;
    ed = tmp + fread(tmp, 1, line_size - len, fp);
    *ed = 0;
    st = line;
  }

  void skip_space() {
    while (true) {
      if (st == ed)
        reread();
      while (*st && is_space(*st))
        ++st;
      if (st != ed)
        return;
    }
  }

  template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
  void read_single(T &s) {
    skip_space();
    if (st + int_digits >= ed)
      reread();
    bool neg = false;
    if (is_signed<T>::value && *st == '-') {
      neg = true;
      ++st;
    }
    typename make_unsigned<T>::type y = *st++ - '0';
    while (*st >= '0') {
      y = 10 * y + *st++ - '0';
    }
    s = (neg ? -y : y);
  }

  template <typename T, enable_if_t<is_same<T, string>::value, int> = 0>
  void read_single(T &s) {
    s = "";
    skip_space();
    while (true) {
      char *base = st;
      while (*st && !is_space(*st))
        ++st;
      s += string(base, st);
      if (st != ed)
        return;
      reread();
    }
  }

  template <typename T> void read_single(vector<T> &s) {
    for (auto &d : s)
      read(d);
  }
};

/**
 * @brief Printer(高速出力)
 */
struct Printer {
public:
  explicit Printer(FILE *fp) : fp(fp) {}

  ~Printer() { flush(); }

  template <bool f = false, typename T, typename... E>
  void write(const T &t, const E &...e) {
    if (f)
      write_single(' ');
    write_single(t);
    write<true>(e...);
  }

  template <typename... T> void writeln(const T &...t) {
    write(t...);
    write_single('\n');
  }

  void flush() {
    fwrite(line, 1, st - line, fp);
    st = line;
  }

private:
  FILE *fp = nullptr;
  static constexpr size_t line_size = 1 << 16;
  static constexpr size_t int_digits = 20;
  char line[line_size + 1] = {};
  char *st = line;

  template <bool f = false> void write() {}

  void write_single(const char &t) {
    if (st + 1 >= line + line_size)
      flush();
    *st++ = t;
  }

  template <typename T, enable_if_t<is_integral<T>::value, int> = 0>
  void write_single(T s) {
    if (st + int_digits >= line + line_size)
      flush();
    st += to_chars(st, st + int_digits, s).ptr - st;
  }

  void write_single(const string &s) {
    for (auto &c : s)
      write_single(c);
  }

  void write_single(const char *s) {
    while (*s != 0)
      write_single(*s++);
  }

  template <typename T> void write_single(const vector<T> &s) {
    for (size_t i = 0; i < s.size(); i++) {
      if (i)
        write_single(' ');
      write_single(s[i]);
    }
  }
};

Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);

void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
  printer.write(head);
  if (sizeof...(Tail))
    printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail> void read(Head &head, Tail &...tail) {
  scanner.read(head);
  read(tail...);
}
#define INT(...)                                                               \
  int __VA_ARGS__;                                                             \
  read(__VA_ARGS__)
#define LL(...)                                                                \
  long long __VA_ARGS__;                                                       \
  read(__VA_ARGS__)
#define STR(...)                                                               \
  string __VA_ARGS__;                                                          \
  read(__VA_ARGS__)
#define CHAR(...)                                                              \
  char __VA_ARGS__;                                                            \
  read(__VA_ARGS__)
#define DBL(...)                                                               \
  double __VA_ARGS__;                                                          \
  read(__VA_ARGS__)

#define VEC(type, name, size)                                                  \
  vector<type> name(size);                                                     \
  read(name)
#define VV(type, name, h, w)                                                   \
  vector<vector<type>> name(h, vector<type>(w));                               \
  read(name)

#ifdef LOCAL
#include <debug.h>
#else
#define debug(...) 42
#endif // LOCAL

struct ChronoTimer {
  std::chrono::high_resolution_clock::time_point st;

  ChronoTimer() { reset(); }

  void reset() { st = std::chrono::high_resolution_clock::now(); }

  std::chrono::milliseconds::rep elapsed() {
    auto ed = std::chrono::high_resolution_clock::now();
    return std::chrono::duration_cast<std::chrono::milliseconds>(ed - st)
        .count();
  }
};

namespace Geometry {
typedef double db;
const db EPS = 1e-8;
// 判断数符号,负数返回-1,0返回0,正数返回1
inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }

// 比较两数大小
inline int cmp(db a, db b) { return sign(a - b); }

// 点类,向量类
struct P {
  // 点表示坐标,向量表示向量
  db x, y;
  P() {}
  // 构造函数
  P(db _x, db _y) : x(_x), y(_y) {}

  // 向量加减乘除
  P operator+(P p) { return {x + p.x, y + p.y}; }
  P operator-(P p) { return {x - p.x, y - p.y}; }
  P operator*(db d) { return {x * d, y * d}; }
  P operator/(db d) { return {x / d, y / d}; }

  // 比较字典序
  bool operator<(P p) const {
    int c = cmp(x, p.x);
    if (c) {
      return c == -1;
    }
    return cmp(y, p.y) == -1;
  }
  bool operator==(P o) const { return cmp(x, o.x) == 0 && cmp(y, o.y) == 0; }

  // 点积
  db dot(P p) { return x * p.x + y * p.y; }
  // 叉积
  db det(P p) { return x * p.y - y * p.x; }
  // 点距离
  db distTo(P p) { return (*this - p).abs(); }

  db alpha() { return atan2(y, x); }
  void read() { cin >> x >> y; }
  void write() { cout << "(" << x << "," << y << ")" << endl; }
  db abs() { return sqrt(abs2()); }
  db abs2() { return x * x + y * y; }
  P rot90() { return P(-y, x); }
  P unit() { return *this / abs(); }
  // 判断点在极角坐标系上半边还是下半边,极点和极轴也算上半边
  int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }

  // 向量旋转
  P rot(db an) {
    return {db(x * cos(an) - y * sin(an)), db(x * sin(an) + y * cos(an))};
  }
};

// 线类,半平面类
struct L {  // ps[0] -> ps[1]
  P ps[2];
  P &operator[](int i) { return ps[i]; }
  P dir() { return ps[1] - ps[0]; }
  L(P a, P b) {
    ps[0] = a;
    ps[1] = b;
  }
  bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; }
  L push() {  // push eps outward
    const double eps = 1e-8;
    P delta = (ps[1] - ps[0]).rot90().unit() * eps;
    return {ps[0] + delta, ps[1] + delta};
  }
};

// 叉积
#define cross(p1, p2, p3) \
  ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y))
#define crossOp(p1, p2, p3) sign(cross(p1, p2, p3))

// 判断向量平行
bool chkLL(P p1, P p2, P q1, P q2) {
  db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
  return sign(a1 + a2) != 0;
}

// 求直线交点
P isLL(P p1, P p2, P q1, P q2) {
  db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
  return (p1 * a2 + p2 * a1) / (a1 + a2);
}
P isLL(L l1, L l2) { return isLL(l1[0], l1[1], l2[0], l2[1]); }

bool intersect(db l1, db r1, db l2, db r2) {
  if (l1 > r1) {
    swap(l1, r1);
  }
  if (l2 > r2) {
    swap(l2, r2);
  }
  return !(cmp(r1, l2) == -1 || cmp(r2, l1) == -1);
}

// 判断线段相交,交在端点算不算分为严格不严格
bool isSS(P p1, P p2, P q1, P q2) {
  return intersect(p1.x, p2.x, q1.x, q2.x) &&
         intersect(p1.y, p2.y, q1.y, q2.y) &&
         crossOp(p1, p2, q1) * crossOp(p1, p2, q2) <= 0 &&
         crossOp(q1, q2, p1) * crossOp(q1, q2, p2) <= 0;
}

bool isSS_strict(P p1, P p2, P q1, P q2) {
  return crossOp(p1, p2, q1) * crossOp(p1, p2, q2) < 0 &&
         crossOp(q1, q2, p1) * crossOp(q1, q2, p2) < 0;
}

// 点在线段上判定
bool isMiddle(db a, db m, db b) {
  return sign(a - m) == 0 || sign(b - m) == 0 || ((a < m) != (b < m));
}
bool isMiddle(P a, P m, P b) {
  return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}
bool onSeg(P p1, P p2, P q) {
  return crossOp(p1, p2, q) == 0 && isMiddle(p1, q, p2);
}
bool onSeg_strict(P p1, P p2, P q) {
  return crossOp(p1, p2, q) == 0 &&
         sign((q - p1).dot(p1 - p2)) * sign((q - p2).dot(p1 - p2)) < 0;
}

// 投影,反射,最近点
// 最近点是线段外一点到线段上的点的最短距离
P proj(P p1, P p2, P q) {
  P dir = p2 - p1;
  return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}
P reflect(P p1, P p2, P q) { return proj(p1, p2, q) * 2 - q; }
db nearest(P p1, P p2, P q) {
  if (p1 == p2) {
    return p1.distTo(q);
  }
  P h = proj(p1, p2, q);
  if (isMiddle(p1, h, p2)) {
    return q.distTo(h);
  }
  return min(p1.distTo(q), p2.distTo(q));
}

// 线段距离
db disSS(P p1, P p2, P q1, P q2) {
  if (isSS(p1, p2, q1, q2)) return 0;
  return min(min(nearest(p1, p2, q1), nearest(p1, p2, q2)),
             min(nearest(q1, q2, p1), nearest(q1, q2, p2)));
}

db rad(P p1, P p2) { return atan2l(p1.det(p2), p1.dot(p2)); }

db incircle(P p1, P p2, P p3) {
  db A = p1.distTo(p2);
  db B = p2.distTo(p3);
  db C = p3.distTo(p1);
  return sqrtl(A * B * C / (A + B + C));
}

// polygon
// 简单多边形的问题只有判断点在多边形内,和多边形面积简单,其他只做凸多边形

// 多边形面积
db area(vector<P> ps) {
  db ret = 0;
  int N = ps.size();
  for (int i = 0; i < N; ++i) {
    ret += ps[i].det(ps[(i + 1) % N]);
  }
  return ret / 2;
}

// 2:inside,1:on_seg,0:outside
// 判断点在多边形内
int contain(vector<P> ps, P p) {
  int n = ps.size(), ret = 0;
  for (int i = 0; i < n; i++) {
    P u = ps[i], v = ps[(i + 1) % n];
    if (onSeg(u, v, p)) {
      return 1;
    }
    if (cmp(u.y, v.y) <= 0) {
      swap(u, v);
    }
    if (cmp(p.y, u.y) > 0 || cmp(p.y, v.y) <= 0) {
      continue;
    }
    ret ^= crossOp(p, u, v) > 0;
  }
  return ret * 2;
}

// 凸包
vector<P> convexHull(vector<P> ps) {
  int n = ps.size();
  if (n <= 1) {
    return ps;
  }
  sort(ps.begin(), ps.end());
  vector<P> qs(n * 2);
  int k = 0;
  for (int i = 0; i < n; qs[k++] = ps[i++]) {
    while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) {
      --k;
    }
  }
  for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) {
    while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) {
      --k;
    }
  }
  qs.resize(k - 1);
  return qs;
}
vector<P> convexHullNonStrict(vector<P> ps) {
  // caution: need to unique the Ps first
  int n = ps.size();
  if (n <= 1) {
    return ps;
  }
  sort(ps.begin(), ps.end());
  vector<P> qs(n * 2);
  int k = 0;
  for (int i = 0; i < n; qs[k++] = ps[i++]) {
    while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) {
      --k;
    }
  }
  for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) {
    while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) {
      --k;
    }
  }
  qs.resize(k - 1);
  return qs;
}

// 凸包直径
db convexDiameter(vector<P> ps) {
  int n = ps.size();
  if (n <= 1) {
    return 0;
  }
  int is = 0, js = 0;
  for (int k = 1; k < n; k++) {
    is = ps[k] < ps[is] ? k : is, js = ps[js] < ps[k] ? k : js;
  }
  int i = is, j = js;
  db ret = ps[i].distTo(ps[j]);
  do {
    if ((ps[(i + 1) % n] - ps[i]).det(ps[(j + 1) % n] - ps[j]) >= 0) {
      (++j) %= n;
    } else {
      (++i) %= n;
    }
    ret = max(ret, ps[i].distTo(ps[j]));
  } while (i != is || j != js);
  return ret;
}

// 直线切割凸包,返回直线左边凸包的点
vector<P> convexCut(const vector<P> &ps, P q1, P q2) {
  vector<P> qs;
  int n = ps.size();
  for (int i = 0; i < n; i++) {
    P p1 = ps[i], p2 = ps[(i + 1) % n];
    int d1 = crossOp(q1, q2, p1), d2 = crossOp(q1, q2, p2);
    if (d1 >= 0) {
      qs.push_back(p1);
    }
    if (d1 * d2 < 0) {
      qs.push_back(isLL(p1, p2, q1, q2));
    }
  }
  return qs;
}

// 平面最近点对,[l,r),要求ps按x升序
db min_dist(vector<P> &ps, int l, int r) {
  if (r - l <= 5) {
    db ret = 1e18;
    for (int i = l; i < r; ++i) {
      for (int j = l; j < i; ++j) {
        ret = min(ret, ps[i].distTo(ps[j]));
      }
    }

    return ret;
  }
  int m = (l + r) >> 1;
  db ret = min(min_dist(ps, l, m), min_dist(ps, m, r));
  vector<P> qs;
  for (int i = l; i < r; ++i) {
    if (abs(ps[i].x - ps[m].x) <= ret) {
      qs.push_back(ps[i]);
    }
  }

  sort(qs.begin(), qs.end(), [](P a, P b) -> bool { return a.y < b.y; });

  int N = qs.size();
  for (int i = 1; i < N; ++i) {
    for (int j = i - 1; j >= 0 && qs[j].y >= qs[i].y - ret; --j) {
      ret = min(ret, qs[i].distTo(qs[j]));
    }
  }

  return ret;
}

int type(P o1, db r1, P o2, db r2) {
  db d = o1.distTo(o2);
  if (cmp(d, r1 + r2) == 1) {
    return 4;
  }
  if (cmp(d, r1 + r2) == 0) {
    return 3;
  }
  if (cmp(d, abs(r1 - r2)) == 1) {
    return 2;
  }
  if (cmp(d, abs(r1 - r2)) == 0) {
    return 1;
  }
  return 0;
}

vector<P> isCL(P o, db r, P p1, P p2) {
  if (cmp(abs((o - p1).det(p2 - p1) / p1.distTo(p2)), r) > 0) {
    return {};
  }

  db x = (p1 - o).dot(p2 - p1);
  db y = (p2 - p1).abs2();
  db d = x * x - y * ((p1 - o).abs2() - r * r);
  d = max(d, (db)0.0);
  P m = p1 - (p2 - p1) * (x / y), dr = (p2 - p1) * (sqrt(d) / y);
  return {m - dr, m + dr};  // along dir: p1->p2
}

// need to check whether two circles are the same
vector<P> isCC(P o1, db r1, P o2, db r2) {
  db d = o1.distTo(o2);
  if (cmp(d, r1 + r2) == 1) {
    return {};
  }
  if (cmp(d, abs(r1 - r2)) == -1) {
    return {};
  }

  d = min(d, r1 + r2);
  db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
  P dr = (o2 - o1).unit();
  P q1 = o1 + dr * y, q2 = dr.rot90() * x;
  return {q1 - q2, q1 + q2};  // along circle 1
}

vector<P> tanCP(P o, db r, P p) {
  db x = (p - o).abs2(), d = x - r * r;
  if (sign(d) <= 0) {
    return {};  // on circle => no tangent
  }

  P q1 = o + (p - o) * (r * r / x);
  P q2 = (p - o).rot90() * (r * sqrt(d) / x);
  return {q1 - q2, q1 + q2};  // counter clock-wise
}

vector<L> extanCC(P o1, db r1, P o2, db r2) {
  vector<L> ret;
  if (cmp(r1, r2) == 0) {
    P dr = (o2 - o1).unit().rot90() * r1;
    ret.push_back(L(o1 + dr, o2 + dr));
    ret.push_back(L(o1 - dr, o2 - dr));
  } else {
    P p = (o2 * r1 - o1 * r2) / (r1 - r2);
    vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);

    int N = std::min(ps.size(), qs.size());
    for (int i = 0; i < N; i++) {
      ret.push_back(L(ps[i], qs[i]));  // c1 counter-clock wise
    }
  }
  return ret;
}

vector<L> intanCC(P o1, db r1, P o2, db r2) {
  vector<L> ret;
  P p = (o1 * r2 + o2 * r1) / (r1 + r2);
  vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
  int N = std::min(ps.size(), qs.size());

  for (int i = 0; i < N; i++) {
    ret.push_back(L(ps[i], qs[i]));  // c1 counter-clock wise
  }
  return ret;
}

db areaCT(db r, P p1, P p2) {
  vector<P> is = isCL(P(0, 0), r, p1, p2);
  if (is.empty()) {
    return r * r * rad(p1, p2) / 2;
  }

  bool b1 = cmp(p1.abs2(), r * r) == 1, b2 = cmp(p2.abs2(), r * r) == 1;
  if (b1 && b2) {
    if (sign((p1 - is[0]).dot(p2 - is[0])) <= 0 &&
        sign((p1 - is[0]).dot(p2 - is[0])) <= 0) {
      return r * r * (rad(p1, is[0]) + rad(is[1], p2)) / 2 +
             is[0].det(is[1]) / 2;
    } else {
      return r * r * rad(p1, p2) / 2;
    }
  }

  if (b1) {
    return (r * r * rad(p1, is[0]) + is[0].det(p2)) / 2;
  }
  if (b2) {
    return (p1.det(is[1]) + r * r * rad(is[1], p2)) / 2;
  }

  return p1.det(p2) / 2;
}

bool parallel(L l0, L l1) { return sign(l0.dir().det(l1.dir())) == 0; }

// 极角排序
bool cmp(P a, P b) {
  if (a.quad() != b.quad()) {
    return a.quad() < b.quad();
  } else {
    return sign(a.det(b)) > 0;
  }
}

bool sameDir(L l0, L l1) {
  return parallel(l0, l1) && sign(l0.dir().dot(l1.dir())) == 1;
}
bool operator<(L l0, L l1) {
  if (sameDir(l0, l1)) {
    return l1.include(l0[0]);
  } else {
    return cmp(l0.dir(), l1.dir());
  }
}
bool check(L u, L v, L w) { return w.include(isLL(u, v)); }

// 半平面交
vector<P> halfPlaneIS(vector<L> &l) {
  sort(l.begin(), l.end());
  deque<L> q;
  for (int i = 0; i < (int)l.size(); ++i) {
    if (i && sameDir(l[i], l[i - 1])) continue;
    while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i]))
      q.pop_back();
    while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front();
    q.push_back(l[i]);
  }
  while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0]))
    q.pop_back();
  while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front();
  vector<P> ret;
  for (int i = 0; i < (int)q.size(); ++i)
    ret.push_back(isLL(q[i], q[(i + 1) % q.size()]));
  return ret;
}

// 内心,角平分线的交点
P inCenter(P A, P B, P C) {
  db a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
  return (A * a + B * b + C * c) / (a + b + c);
}

// 外心,垂直平分线的交点
P circumCenter(P a, P b, P c) {
  P bb = b - a, cc = c - a;
  db ab = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
  return a - P(bb.y * dc - cc.y * ab, cc.x * ab - bb.x * dc) / d;
}

// 垂心,垂线的交点
P orthoCenter(P a, P b, P c) {
  P ba = b - a, ca = c - a, bc = b - c;
  db Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y,
     x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
     y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
  return {x0, y0};
}

/*
 p 是在ABC外接圆的内部还是外部
 -1 外部, 0 边界, 1内部
 WARNING: 注意 ^ 4 溢出
 */
int outcircle_side(P A, P B, P C, P p) {
  db d = (B - A).det(C - A);
  assert(d != 0);
  if (d < 0) swap(B, C);
  array<P, 3> pts = {A, B, C};
  array<array<db, 3>, 3> mat;
  for (int i = 0; i < 3; i++) {
    db dx = pts[i].x - p.x, dy = pts[i].y - p.y;
    mat[i][0] = dx, mat[i][1] = dy, mat[i][2] = dx * dx + dy * dy;
  }
  db det = 0;
  det += mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]);
  det += mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]);
  det += mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]);
  if (det == 0) return 0;
  return (det > 0 ? 1 : -1);
}
}  // namespace Geometry
using namespace Geometry;

void run() {
  std::vector<P> ps(4);
  for (auto &p : ps) p.read();
  if (ps[0] == ps[2] && ps[1] == ps[3]) {
    std::cout << "Yes\n";
    return;
  }

  if (parallel(L(ps[0], ps[1]), L(ps[2], ps[3])) && cmp(ps[0].distTo(ps[1]), ps[2].distTo(ps[3])) == 1) {
    std::cout << "Yes\n";
  } else {
    std::cout << "No\n";
  }
}

int main(int, char **) {
#ifdef LOCAL
  ChronoTimer chrono;
  freopen("../src/input.txt", "r", stdin);
  freopen("../src/output.txt", "w", stdout);
#endif
  std::cout << fixed << setprecision(12);
  std::cin.tie(nullptr)->sync_with_stdio(false);
  int T; std::cin >> T;
  while (T--) {
    run();
  }

#ifdef LOCAL
  print("\nRunning Time:", chrono.elapsed(), "ms");
#endif
}
0