結果

問題 No.2642 Don't cut line!
ユーザー ecottea
提出日時 2024-02-19 22:29:36
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 191 ms / 4,000 ms
コード長 14,424 bytes
コンパイル時間 4,777 ms
コンパイル使用メモリ 276,552 KB
最終ジャッジ日時 2025-02-19 17:16:40
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* to :
* cost :
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; //
ll cost; //
ll pri;
WEdge() : to(-1), cost(-INFL), pri(0) {}
WEdge(int to, ll cost, ll pri) : to(to), cost(cost), pri(pri) {}
//
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << '(' << e.to << ',' << e.cost << ',' << e.pri << ')';
return os;
}
#endif
};
//
/*
* WGraph g
* g[v] : v
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//O(n + m)
/*
* (, , ) n m
*
* n :
* m : n-1
* undirected : true
* one_indexed : 1-indexed true
*/
WGraph read_WGraph(int n, int m = -1, bool undirected = true, bool one_indexed = true) {
// verify : https://judge.yosupo.jp/problem/shortest_path
WGraph g(n);
if (m == -1) m = n - 1;
rep(i, m) {
int a, b; ll c, p;
cin >> a >> b >> c >> p;
if (one_indexed) { --a; --b; }
g[a].push_back({ b, c, p });
if (undirected && a != b) g[b].push_back({ a, c, p });
}
return g;
}
//O(m log n)
/*
* g
* msf rs
*/
ll kruskal(const WGraph& g, WGraph* msf, vector<tuple<int, int, ll, ll>>& es) {
// verify : https://judge.yosupo.jp/problem/minimum_spanning_tree
int n = sz(g);
*msf = WGraph(n);
//
priority_queue_rev<tuple<ll, int, int, ll>> q;
rep(s, n) repe(e, g[s]) q.push({ e.cost, s, e.to, e.pri });
ll cost = 0; //
dsu d(n); //
while (!q.empty()) {
auto [c, s, t, pri] = q.top(); q.pop();
//
if (d.same(s, t)) {
es.push_back({ s, t, c, pri });
continue;
}
//
cost += c;
d.merge(s, t);
if (msf != nullptr) {
(*msf)[s].push_back({ t, c, pri });
(*msf)[t].push_back({ s, c, pri });
}
}
return cost;
}
//[,][,]M-
/*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt) : O(n)
* rt g v[0..n) = o()
* M- (S, op, o, F, act, comp, id)
*
* Edge_apply_sum_query<S, op, o, F, act, comp, id>(Graph g, int rt, vS a) : O(n)
* rt g v[0..n) = a[0..n)
* v[s] s v[rt]
*
* set(int s, S x) : O(log n)
* s x
*
* S get(int s) : O(log n)
* s
*
* S sum_subtree(int s) : O(log n)
* s
*
* S sum_path(int s, int t) : O((log n)^2)
* s→t
*
* apply(int s, F f) : O(log n)
* s f
*
* apply_subtree(int v, F f) : O(log n)
* s f
*
* apply_path(int s, int t, F f) : O((log n)^2)
* s→t f
*/
template <class S, S(*op)(S, S), S(*o)(), class F, S(*act)(F, S), F(*comp)(F, F), F(*id)()>
class Edge_apply_sum_query {
// https://qiita.com/Pro_ktmr/items/4e1e051ea0561772afa3
int n;
// in[s] : DFS s
// out[s] : DFS s
// top[s] : s heavy path
// wgt[s] : s s
// p[s] : s
vi in, out, top, wgt, p;
vl a;
// v[i] : t
using SEG = lazy_segtree<S, op, o, F, act, comp, id>;
SEG v;
// DFS
void dfs1(const WGraph& g, int rt) {
function<void(int)> rf = [&](int s) {
repe(t, g[s]) {
if (t == p[s]) continue;
a[t] = t.cost;
p[t] = s;
rf(t);
wgt[s] += wgt[t] + 1;
}
};
p[rt] = -1;
rf(rt);
};
// DFS
void dfs2(const WGraph& g, int rt) {
int time = 0;
function<void(int, int)> rf = [&](int s, int tp) {
in[s] = time;
top[s] = tp;
time++;
//
int w_max = -INF, t_max = -1;
repe(t, g[s]) {
if (t == p[s]) continue;
if (chmax(w_max, wgt[t])) t_max = t;
}
//
if (t_max != -1) rf(t_max, tp);
//
repe(t, g[s]) {
if (t == p[s] || t == t_max) continue;
rf(t, t);
}
// s
out[s] = time;
};
rf(rt, rt);
}
public:
// rt g v[0..n) = a[0..n)
Edge_apply_sum_query(const WGraph& g, int rt) : n(sz(g)), in(n), out(n), top(n), wgt(n), p(n) {
a.resize(n);
dfs1(g, rt);
dfs2(g, rt);
vector<S> ini(n);
rep(s, n) ini[in[s]] = a[s];
v = SEG(ini);
}
Edge_apply_sum_query() : n(0) {}
// s x
void set(int s, S x) {
v.set(in[s], x);
}
// s
S get(int s) {
return v.get(in[s]);
}
// s
S sum_subtree(int s) {
return v.prod(in[s] + 1, out[s]);
}
// s→t
S sum_path(int s, int t) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E
S res = o();
// s t
while (top[s] != top[t]) {
// s
if (in[top[s]] > in[top[t]]) swap(s, t);
// t v
// top[t] t
res = op(res, v.prod(in[top[t]], in[t] + 1));
//
t = p[top[t]];
}
// s t
// res
if (in[s] > in[t]) swap(s, t);
res = op(res, v.prod(in[s] + 1, in[t] + 1));
return res;
}
// s f
void apply(int s, F f) {
v.apply(in[s], f);
}
// s f
void apply_subtree(int s, F f) {
v.apply(in[s] + 1, out[s], f);
}
// s→t f
void apply_path(int s, int t, F f) {
// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_E
// s t
while (top[s] != top[t]) {
// s
if (in[top[s]] > in[top[t]]) swap(s, t);
// t v
v.apply(in[top[t]], in[t] + 1, f);
//
t = p[top[t]];
}
// s t
if (in[s] > in[t]) swap(s, t);
v.apply(in[s] + 1, in[t] + 1, f);
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, Edge_apply_sum_query& q) {
rep(s, q.n) os << q.get(s) << " ";
return os;
}
#endif
};
//chmax max
/* verify : https://atcoder.jp/contests/abc177/tasks/abc177_f */
using T116 = ll;
using S116 = T116;
S116 op116(S116 x, S116 y) { return max(x, y); }
S116 e116() { return -INFL; }
using F116 = T116;
S116 act116(F116 f, S116 x) { return max(f, x); }
F116 comp116(F116 f, F116 g) { return max(f, g); }
F116 id116() { return -INFL; }
#define Chmax_Max_mmonoid S116, op116, e116, F116, act116, comp116, id116
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, m; ll c;
cin >> n >> m >> c;
auto g = read_WGraph(n, m, false);
WGraph g2; vector<tuple<int, int, ll, ll>> es;
ll c_sum = kruskal(g, &g2, es);
dumpel(g2); dump(es); dump(c_sum);
if (c_sum > c) EXIT(-1);
ll pri_max = -INFL;
rep(s, n) repe(t, g2[s]) chmax(pri_max, t.pri);
dump(pri_max);
Edge_apply_sum_query<Chmax_Max_mmonoid> G(g2, 0);
ll res = pri_max;
for (auto [u, v, c_uv, pri] : es) {
dump(u, v, c_uv, pri);
if (pri <= pri_max) continue;
ll c_max = G.sum_path(u, v);
dump(c_max);
if (c_sum + c_uv - c_max <= c) chmax(res, pri);
}
cout << res << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0