結果
問題 | No.2644 Iro Iro-Iro |
ユーザー | Aeren |
提出日時 | 2024-02-19 23:17:01 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 378 ms / 2,000 ms |
コード長 | 5,811 bytes |
コンパイル時間 | 2,909 ms |
コンパイル使用メモリ | 265,980 KB |
実行使用メモリ | 183,524 KB |
最終ジャッジ日時 | 2024-09-29 02:59:00 |
合計ジャッジ時間 | 16,177 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 315 ms
183,272 KB |
testcase_01 | AC | 312 ms
183,440 KB |
testcase_02 | AC | 319 ms
183,400 KB |
testcase_03 | AC | 320 ms
183,404 KB |
testcase_04 | AC | 318 ms
183,488 KB |
testcase_05 | AC | 317 ms
183,304 KB |
testcase_06 | AC | 311 ms
183,444 KB |
testcase_07 | AC | 319 ms
183,472 KB |
testcase_08 | AC | 325 ms
183,412 KB |
testcase_09 | AC | 320 ms
183,400 KB |
testcase_10 | AC | 314 ms
183,440 KB |
testcase_11 | AC | 320 ms
183,280 KB |
testcase_12 | AC | 310 ms
183,404 KB |
testcase_13 | AC | 356 ms
183,400 KB |
testcase_14 | AC | 360 ms
183,396 KB |
testcase_15 | AC | 358 ms
183,428 KB |
testcase_16 | AC | 368 ms
183,308 KB |
testcase_17 | AC | 358 ms
183,464 KB |
testcase_18 | AC | 351 ms
183,308 KB |
testcase_19 | AC | 347 ms
183,460 KB |
testcase_20 | AC | 363 ms
183,424 KB |
testcase_21 | AC | 355 ms
183,420 KB |
testcase_22 | AC | 356 ms
183,472 KB |
testcase_23 | AC | 371 ms
183,372 KB |
testcase_24 | AC | 355 ms
183,368 KB |
testcase_25 | AC | 369 ms
183,524 KB |
testcase_26 | AC | 375 ms
183,412 KB |
testcase_27 | AC | 364 ms
183,412 KB |
testcase_28 | AC | 308 ms
183,420 KB |
testcase_29 | AC | 378 ms
183,276 KB |
testcase_30 | AC | 355 ms
183,280 KB |
testcase_31 | AC | 340 ms
183,424 KB |
testcase_32 | AC | 353 ms
183,364 KB |
ソースコード
// #pragma GCC optimize("O3,unroll-loops") #include <bits/stdc++.h> // #include <x86intrin.h> using namespace std; #if __cplusplus >= 202002L using namespace numbers; #endif struct fast_fourier_transform_wrapper{ using CD = complex<double>; using CLD = complex<long double>; // i \in [2^k, 2^{k+1}) holds w_{2^k+1}^{i-2^k} static vector<CD> root; static vector<CLD> root_ld; static void adjust_root(int n){ if(root.empty()) root = {1, 1}, root_ld = {1, 1}; for(auto k = (int)root.size(); k < n; k <<= 1){ root.resize(n), root_ld.resize(n); auto theta = polar(1.0L, acos(-1.0L) / k); for(auto i = k; i < k << 1; ++ i) root[i] = root_ld[i] = i & 1 ? root_ld[i >> 1] * theta : root_ld[i >> 1]; } } // O(n * log(n)) static void transform(vector<CD> &p, bool invert = false){ int n = (int)p.size(); assert(n && __builtin_popcount(n) == 1); for(auto i = 1, j = 0; i < n; ++ i){ int bit = n >> 1; for(; j & bit; bit >>= 1) j ^= bit; j ^= bit; if(i < j) swap(p[i], p[j]); } adjust_root(n); for(auto len = 1; len < n; len <<= 1) for(auto i = 0; i < n; i += len << 1) for(auto j = 0; j < len; ++ j){ auto x = (double *)&root[j + len], y = (double *)&p[i + j + len]; CD z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]); p[len + i + j] = p[i + j] - z, p[i + j] += z; } if(invert){ reverse(p.begin() + 1, p.end()); auto inv_n = 1.0l / n; for(auto &x: p) x *= inv_n; } } static vector<CD> buffer1, buffer2; // O(n * m) template<class T> static vector<T> convolute_naive(const vector<T> &p, const vector<T> &q){ vector<T> res(max((int)p.size() + (int)q.size() - 1, 0)); for(auto i = 0; i < (int)p.size(); ++ i) for(auto j = 0; j < (int)q.size(); ++ j) res[i + j] += p[i] * q[j]; return res; } // Safe for sum(p[i]^2 + q[i]^2) lg2(n) < 9e14 // O(n * log(n)) template<class T> static vector<T> convolute(const vector<T> &p, const vector<T> &q){ if(min(p.size(), q.size()) < 60) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; buffer1.assign(n, 0); for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i].real(p[i]); for(auto i = 0; i < (int)q.size(); ++ i) buffer1[i].imag(q[i]); transform(buffer1); for(auto &x: buffer1) x *= x; buffer2.assign(n, 0); for(auto i = 0; i < n; ++ i) buffer2[i] = buffer1[i] - conj(buffer1[-i & n - 1]); transform(buffer2, true); vector<T> res((int)p.size() + (int)q.size() - 1); for(auto i = 0; i < (int)res.size(); ++ i) res[i] = is_integral_v<T> ? llround(buffer2[i].imag() / 4) : buffer2[i].imag() / 4; return res; } // O(n * log(n)) static vector<CD> convolute_complex(const vector<CD> &p, const vector<CD> &q){ if(min(p.size(), q.size()) < 60) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; buffer1 = p, buffer2 = q; buffer1.resize(n), buffer2.resize(n); transform(buffer1), transform(buffer2); for(auto i = 0; i < n; ++ i) buffer1[i] *= buffer2[i]; transform(buffer1, true); return {buffer1.begin(), buffer1.begin() + ((int)p.size() + (int)q.size() - 1)}; } // Safe for 64-bit integer range // O(n * log(n)) template<class T> static vector<T> convolute_splitting(const vector<T> &p, const vector<T> &q){ if(min(p.size(), q.size()) < 80) return convolute_naive(p, q); int n = 1 << __lg((int)p.size() + (int)q.size() - 1) + 1; const int cut = 32000; buffer1.assign(n, 0); for(auto i = 0; i < (int)p.size(); ++ i) buffer1[i] = {(int)p[i] / cut, (int)p[i] % cut}; transform(buffer1); buffer2.assign(n, 0); for(auto i = 0; i < (int)q.size(); ++ i) buffer2[i] = {(int)q[i] / cut, (int)q[i] % cut}; transform(buffer2); for(auto i = 0; i <= n >> 1; ++ i){ int j = -i & n - 1; if(i == j){ tie(buffer1[i], buffer2[i]) = pair<CD, CD>{ (buffer1[i] + conj(buffer1[i])) * buffer2[i] / 2.0, (buffer1[i] - conj(buffer1[i])) * buffer2[i] / 2i }; } else{ tie(buffer1[i], buffer2[i], buffer1[j], buffer2[j]) = tuple<CD, CD, CD, CD>{ (buffer1[i] + conj(buffer1[j])) * buffer2[i] / 2.0, (buffer1[i] - conj(buffer1[j])) * buffer2[i] / 2i, (buffer1[j] + conj(buffer1[i])) * buffer2[j] / 2.0, (buffer1[j] - conj(buffer1[i])) * buffer2[j] / 2i }; } } transform(buffer1, true); transform(buffer2, true); vector<T> res((int)p.size() + (int)q.size() - 1); for(auto i = 0; i < (int)res.size(); ++ i) res[i] = ((T)llround(buffer1[i].real()) * cut + (T)(llround(buffer1[i].imag()) + llround(buffer2[i].real()))) * cut + (T)llround(buffer2[i].imag()); return res; } // Safe for 64-bit integer range // O(n * log(n)) template<class T> static vector<T> convolute_splitting_mod(const vector<T> &p, const vector<T> &q){ if(min(p.size(), q.size()) < 80) return convolute_naive(p, q); vector<int> p2(p.begin(), p.end()), q2(q.begin(), q.end()); p2 = convolute_splitting(p2, q2); return {p2.begin(), p2.end()}; } }; vector<complex<double>> fast_fourier_transform_wrapper::root; vector<complex<long double>> fast_fourier_transform_wrapper::root_ld; vector<complex<double>> fast_fourier_transform_wrapper::buffer1; vector<complex<double>> fast_fourier_transform_wrapper::buffer2; using fft = fast_fourier_transform_wrapper; int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); int n, qn; cin >> n >> qn; const int base = 101; vector<int> a(base * base * base); for(auto i = 0; i < n; ++ i){ int x, y, z; cin >> x >> y >> z; a[base * base * x + base * y + z] = 1; } auto b = a; ranges::reverse(b); auto ab = fft::convolute(a, b); int res = 0; for(auto qi = 0; qi < qn; ++ qi){ int x, y, z; cin >> x >> y >> z; res = max(res, 2 * n - ab[base * base * base - 1 + base * base * x + base * y + z]); } cout << res << "\n"; return 0; } /* */