結果

問題 No.2650 [Cherry 6th Tune *] セイジャク
ユーザー StanMarshStanMarsh
提出日時 2024-02-23 22:37:47
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 944 ms / 2,500 ms
コード長 16,133 bytes
コンパイル時間 315 ms
コンパイル使用メモリ 82,504 KB
実行使用メモリ 225,884 KB
最終ジャッジ日時 2024-09-29 07:41:27
合計ジャッジ時間 26,640 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 147 ms
91,904 KB
testcase_01 AC 150 ms
91,648 KB
testcase_02 AC 374 ms
129,616 KB
testcase_03 AC 304 ms
116,308 KB
testcase_04 AC 788 ms
185,200 KB
testcase_05 AC 604 ms
192,264 KB
testcase_06 AC 415 ms
139,416 KB
testcase_07 AC 632 ms
173,796 KB
testcase_08 AC 347 ms
136,704 KB
testcase_09 AC 923 ms
224,240 KB
testcase_10 AC 920 ms
222,292 KB
testcase_11 AC 944 ms
221,708 KB
testcase_12 AC 928 ms
221,480 KB
testcase_13 AC 914 ms
221,748 KB
testcase_14 AC 923 ms
221,012 KB
testcase_15 AC 927 ms
223,508 KB
testcase_16 AC 812 ms
222,456 KB
testcase_17 AC 835 ms
225,884 KB
testcase_18 AC 869 ms
221,904 KB
testcase_19 AC 871 ms
222,028 KB
testcase_20 AC 816 ms
221,272 KB
testcase_21 AC 820 ms
222,168 KB
testcase_22 AC 816 ms
222,532 KB
testcase_23 AC 767 ms
222,200 KB
testcase_24 AC 768 ms
221,936 KB
testcase_25 AC 778 ms
223,092 KB
testcase_26 AC 768 ms
222,028 KB
testcase_27 AC 758 ms
221,160 KB
testcase_28 AC 757 ms
222,952 KB
testcase_29 AC 767 ms
222,516 KB
testcase_30 AC 736 ms
222,548 KB
testcase_31 AC 829 ms
221,004 KB
testcase_32 AC 450 ms
141,832 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from random import getrandbits, randrange
from string import ascii_lowercase, ascii_uppercase
import sys
from math import ceil, floor, sqrt, pi, factorial, gcd, log, log10, log2, inf, cos, sin
from copy import deepcopy, copy
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import (
    accumulate,
    chain,
    product,
    combinations,
    combinations_with_replacement,
    permutations,
)
from bisect import bisect, bisect_left, bisect_right
from functools import lru_cache, reduce
from decimal import Decimal, getcontext
from typing import List, Tuple, Optional


inf = float("inf")


class Inf:
    def __init__(self, value):
        self.value = value

    def __lt__(self, other):
        return False

    def __le__(self, other):
        if isinstance(other, Inf):
            return True
        return False

    def __gt__(self, other):
        if isinstance(other, Inf):
            return False
        return True

    def __ge__(self, other):
        return True

    def __eq__(self, other):
        return isinstance(other, Inf) and self.value == other.value

    def __repr__(self):
        return f"{self.value}"

    def __add__(self, other):
        return Inf(self.value) if isinstance(other, Inf) else self

    def __sub__(self, other):
        return Inf(self.value) if isinstance(other, Inf) else self

    def __mul__(self, other):
        return Inf(self.value) if isinstance(other, Inf) else self


def ceil_div(a, b):
    return (a + b - 1) // b


def isqrt(num):
    res = int(sqrt(num))
    while res * res > num:
        res -= 1
    while (res + 1) * (res + 1) <= num:
        res += 1
    return res


def int1(s):
    return int(s) - 1


from types import GeneratorType


def bootstrap(f, stack=[]):
    def wrapped(*args, **kwargs):
        if stack:
            return f(*args, **kwargs)
        else:
            to = f(*args, **kwargs)
            while True:
                if type(to) is GeneratorType:
                    stack.append(to)
                    to = next(to)
                else:
                    stack.pop()
                    if not stack:
                        break
                    to = stack[-1].send(to)
            return to

    return wrapped


import sys
import os

input = lambda: sys.stdin.readline().rstrip("\r\n")

print = lambda *args, end="\n", sep=" ": sys.stdout.write(
    sep.join(map(str, args)) + end
)


def II():
    return int(input())


def MII(base=0):
    return map(lambda s: int(s) - base, input().split())


def LII(base=0):
    return list(MII(base))


def NA():
    n = II()
    a = LII()
    return n, a


def read_graph(n, m, base=0, directed=False, return_edges=False):

    g = [[] for _ in range(n)]
    edges = []
    for _ in range(m):
        a, b = MII(base)
        if return_edges:
            edges.append((a, b))
        g[a].append(b)
        if not directed:
            g[b].append(a)
    if return_edges:
        return g, edges
    return g


def read_graph_with_weight(n, m, base=0, directed=False, return_edges=False):

    g = [[] for _ in range(n)]
    edges = []
    for _ in range(m):
        a, b, w = MII()
        a, b = a - base, b - base
        if return_edges:
            edges.append((a, b, w))
        g[a].append((b, w))
        if not directed:
            g[b].append((a, w))
    if return_edges:
        return g, edges
    return g


def read_edges_from_ps():
    ps = LII(1)
    edges = []
    for i, p in enumerate(ps, 1):
        edges.append((p, i))
    return edges


def iterate_tokens():
    for line in sys.stdin:
        for word in line.split():
            yield word


tokens = None


def NI():
    global tokens
    if tokens is None:
        tokens = iterate_tokens()
    return int(next(tokens))


def LNI(n):
    return [NI() for _ in range(n)]


def yes(res):
    print("Yes" if res else "No")


def YES(res):
    print("YES" if res else "NO")


def pairwise(a):
    n = len(a)
    for i in range(n - 1):
        yield a[i], a[i + 1]


def factorial(n):
    return reduce(lambda x, y: x * y, range(1, n + 1))


def cmin(dp, i, x):
    if x < dp[i]:
        dp[i] = x


def cmax(dp, i, x):
    if x > dp[i]:
        dp[i] = x


def alp_a_to_i(s):
    return ord(s) - ord("a")


def alp_A_to_i(s):
    return ord(s) - ord("A")


def alp_i_to_a(i):
    return chr(ord("a") + i)


def alp_i_to_A(i):
    return chr(ord("A") + i)


d4 = [(1, 0), (0, 1), (-1, 0), (0, -1)]
d8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]


def ranges(n, m):
    return ((i, j) for i in range(n) for j in range(m))


def rangess(a, b, c):
    return ((i, j, k) for i in range(a) for j in range(b) for k in range(c))


def valid(i, j, n, m):
    return 0 <= i < n and 0 <= j < m


def ninj(i, j, n, m):
    return [(i + di, j + dj) for di, dj in d4 if valid(i + di, j + dj, n, m)]


def gen(x, *args):
    if len(args) == 1:
        return [x] * args[0]
    if len(args) == 2:
        return [[x] * args[1] for _ in [0] * args[0]]
    if len(args) == 3:
        return [[[x] * args[2] for _ in [0] * args[1]] for _ in [0] * args[0]]
    if len(args) == 4:
        return [
            [[[x] * args[3] for _ in [0] * args[2]] for _ in [0] * args[1]]
            for _ in [0] * args[0]
        ]


list2d = lambda a, b, v: [[v] * b for _ in range(a)]
list3d = lambda a, b, c, v: [[[v] * c for _ in range(b)] for _ in range(a)]


class Debug:
    def __init__(self, debug=False):
        self.debug = debug
        cur_path = os.path.dirname(os.path.abspath(__file__))
        self.local = os.path.exists(cur_path + "/.cph")

    def get_ic(self):
        if self.debug and self.local:
            from icecream import ic

            return ic
        else:
            return lambda *args, **kwargs: ...


class LazySegmentTree:
    def __init__(self, op, e, mapping, composition, id, n_a):
        self._n = len(n_a) if isinstance(n_a, list) else n_a
        self.op = op
        self.e = e
        self.mapping = mapping
        self.composition = composition
        self.id = id
        self.log = (self._n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [e for _ in range(2 * self.size)]
        self.lz = [id for _ in range(self.size)]
        if isinstance(n_a, list):
            self.d[self.size : self.size + self._n] = n_a
        [self._update(i) for i in reversed(range(1, self.size))]

    def __repr__(self):
        l, r = 1, 2
        res = []

        def np_T(x):
            return [list(x) for x in zip(*x)]

        while r <= self.size:
            res.append(f"{np_T([self.d[l: r], self.lz[l: r]])}")
            l, r = r, r << 1
        res.append(f"{self.d[l: r]}")
        return "\n".join(res)

    def set(self, p, x):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        self.d[p] = x
        [self._update(p >> i) for i in range(1, self.log + 1)]

    def get(self, p):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        return self.d[p]

    __setitem__ = set

    def __getitem__(self, k):
        if isinstance(k, slice):
            l = k.start if k.start is not None else 0
            r = k.stop if k.stop is not None else self._n - 1
            if l < 0:
                l += self._n
            if r < 0:
                r += self._n
            if l == 0 and r == self._n - 1:
                return self.all_prod()
            return self.prod(l, r + 1)
        return self.get(k)

    def prod(self, l, r):
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in reversed(range(1, self.log + 1)):
            if ((l >> i) << i) != l:
                self._push(l >> i)
            if ((r >> i) << i) != r:
                self._push((r - 1) >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        self.d[p] = self.mapping(f, self.d[p])
        [self._update(p >> i) for i in range(1, self.log + 1)]

    def apply(self, l, r, f):
        if l == r:
            return
        l += self.size
        r += self.size
        for i in reversed(range(1, self.log + 1)):
            if ((l >> i) << i) != l:
                self._push(l >> i)
            if ((r >> i) << i) != r:
                self._push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self._all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self._all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self._update(l >> i)
            if ((r >> i) << i) != r:
                self._update((r - 1) >> i)

    def _update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def _all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def _push(self, k):
        self._all_apply(2 * k, self.lz[k])
        self._all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.id


INF = 10**16


def sum2(x, y):
    return (x[0] + y[0], x[1] + y[1])


def add(f, x):
    return f + x


def add2(f, x):
    return (x[0] + f * x[1], x[1])


def add_comp(f, g):
    return f + g


def update(f, x):
    return f if f < INF else x


def update_min(f, x):
    return min(f, x)


def update2(f, x):
    return (f * x[1], x[1]) if f < INF else x


def update_comp(f, g):
    return f if f < INF else g


class SegmentTree:
    def __init__(self, n):
        self.update_cnt = 0
        self.n = n
        self.size = 1
        while self.size < n:
            self.size *= 2
        self.node = [(self.update_cnt, 0) for i in range(2 * self.size - 1)]

    def apply(self, begin, end, val):

        self.update_cnt += 1
        begin += self.size - 1
        end += self.size - 1
        while begin < end:
            if (end - 1) & 1:
                end -= 1
                self.node[end] = (self.update_cnt, val)
            if (begin - 1) & 1:
                self.node[begin] = (self.update_cnt, val)
                begin += 1
            begin = (begin - 1) // 2
            end = (end - 1) // 2

    def get(self, i):

        i += self.size - 1
        val = self.node[i]
        while i > 0:
            i = (i - 1) // 2
            val = max(val, self.node[i])
        return val[1]

    __getitem__ = get


class LazySegmentTree:
    def __init__(self, op, e, mapping, composition, id, n_a):
        self._n = len(n_a) if isinstance(n_a, list) else n_a
        self.op = op
        self.e = e
        self.mapping = mapping
        self.composition = composition
        self.id = id
        self.log = (self._n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [e for _ in range(2 * self.size)]
        self.lz = [id for _ in range(self.size)]
        if isinstance(n_a, list):
            self.d[self.size : self.size + self._n] = n_a
        [self._update(i) for i in reversed(range(1, self.size))]

    def __repr__(self):
        l, r = 1, 2
        res = []

        def np_T(x):
            return [list(x) for x in zip(*x)]

        while r <= self.size:
            res.append(f"{np_T([self.d[l: r], self.lz[l: r]])}")
            l, r = r, r << 1
        res.append(f"{self.d[l: r]}")
        return "\n".join(res)

    def set(self, p, x):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        self.d[p] = x
        [self._update(p >> i) for i in range(1, self.log + 1)]

    def get(self, p):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        return self.d[p]

    __setitem__ = set

    def __getitem__(self, k):
        if isinstance(k, slice):
            l = k.start if k.start is not None else 0
            r = k.stop if k.stop is not None else self._n - 1
            if l < 0:
                l += self._n
            if r < 0:
                r += self._n
            if l == 0 and r == self._n - 1:
                return self.all_prod()
            return self.prod(l, r + 1)
        return self.get(k)

    def prod(self, l, r):
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in reversed(range(1, self.log + 1)):
            if ((l >> i) << i) != l:
                self._push(l >> i)
            if ((r >> i) << i) != r:
                self._push((r - 1) >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        p += self.size
        [self._push(p >> i) for i in reversed(range(1, self.log + 1))]
        self.d[p] = self.mapping(f, self.d[p])
        [self._update(p >> i) for i in range(1, self.log + 1)]

    def apply(self, l, r, f):
        if l == r:
            return
        l += self.size
        r += self.size
        for i in reversed(range(1, self.log + 1)):
            if ((l >> i) << i) != l:
                self._push(l >> i)
            if ((r >> i) << i) != r:
                self._push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self._all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self._all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self._update(l >> i)
            if ((r >> i) << i) != r:
                self._update((r - 1) >> i)

    def _update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def _all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def _push(self, k):
        self._all_apply(2 * k, self.lz[k])
        self._all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.id


INF = 10**16


def sum2(x, y):
    return (x[0] + y[0], x[1] + y[1])


def add(f, x):
    return f + x


def add2(f, x):
    return (x[0] + f * x[1], x[1])


def add_comp(f, g):
    return f + g


def update(f, x):
    return f if f < INF else x


def update_min(f, x):
    return min(f, x)


def update2(f, x):
    return (f * x[1], x[1]) if f < INF else x


def update_comp(f, g):
    return f if f < INF else g


class Discrete:
    def __init__(self, a=[]):

        self.nums = set(a)
        self.d = {}
        self.n = 0

    def add(self, num):
        self.nums.add(num)

    def distinct(self):
        self.n = len(self.nums)
        self.nums = list(self.nums)
        self.nums.sort()
        self.d = dict(zip(self.nums, range(self.n)))

    def __call__(self, num):

        return self.d[num]

    def __enter__(self):

        return self

    def __exit__(self, exc_type, exc_val, exc_tb):

        self.distinct()


ic = Debug(1).get_ic()
n, _ = MII()
xs = LII(1)
lrs = [LII(1) for _ in range(II())]
with Discrete() as dc:
    for x in xs:
        dc.add(x)
    for l, r in lrs:
        dc.add(l)
        dc.add(r)
        dc.add(r + 1)
st = SegmentTree(dc.n + 1)

for i, (l, r) in enumerate(lrs, 1):
    st.apply(dc(l), dc(r) + 1, i)
for x in xs:
    print(st[dc(x)] or -1)
0