結果
| 問題 |
No.2670 Sum of Products of Interval Lengths
|
| コンテスト | |
| ユーザー |
cureskol
|
| 提出日時 | 2024-03-05 20:35:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 402 ms / 2,000 ms |
| コード長 | 6,873 bytes |
| コンパイル時間 | 3,867 ms |
| コンパイル使用メモリ | 237,576 KB |
| 最終ジャッジ日時 | 2025-02-20 01:04:17 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/convolution>
#include <atcoder/modint>
using namespace atcoder;
using mint = modint998244353;
namespace atcoder {
ostream &operator<<(ostream &os, mint a) {
os << a.val();
return os;
}
istream &operator>>(istream &is, mint &a) {
long long b;
is >> b;
a = b;
return is;
}
} // namespace atcoder
#define REP_(i,n) for(int i=0;i<(n);i++)
template<typename T,int MX>
struct FormalPowerSeries:vector<T>{
using FPS=FormalPowerSeries;
using vector<T>::resize;
using vector<T>::size;
using vector<T>::at;
using vector<T>::assign;
using vector<T>::vector;
using vector<T>::begin;
using vector<T>::end;
using vector<T>::back;
using vector<T>::pop_back;
using value_type=T;
void strict(int n){ if(size()>n)resize(n); }
void shrink(){ while(size() and back()==0)pop_back(); }
FormalPowerSeries(const vector<T>&f){
int n=min(MX,int(f.size()));
resize(n);
REP_(i,n)at(i)=f[i];
shrink();
}
static FPS unit(){ return {1}; }
static FPS x(){ return {0,1}; }
#pragma region operator
FPS operator-()const{
FPS g=*this;
for(T&a:g)a=-a;
return g;
}
FPS &operator+=(const FPS&g){
if(size()<g.size())resize(g.size());
REP_(i,g.size())at(i)+=g[i];
return *this;
}
FPS operator+(const FPS &g)const{return FPS(*this)+=g;}
FPS &operator+=(const T &a){
if(!size())resize(1);
at(0)+=a;
return *this;
}
FPS operator+(const T& a)const{return FPS(*this)+=a;}
friend FPS operator+(const T&a,const FPS&f){return f+a;}
FPS &operator-=(const FPS &g){
if(size()<g.size())resize(g.size());
REP_(i,g.size())at(i)-=g[i];
return *this;
}
FPS operator-(const FPS &g)const{return FPS(*this)-=g;}
FPS &operator-=(const T &a){
if(!size())resize(1);
at(0)-=a;
return *this;
}
FPS operator-(const T& a){return FPS(*this)-=a;}
friend FPS operator-(const T&a,const FPS&f){return a+(-f);}
FPS operator*(const FPS&g)const{ return FPS(convolution(*this,g)); }
FPS&operator*=(const FPS&g){ return (*this)=(*this)*g; }
FPS&operator*=(const T &a){
REP_(i,size())at(i)*=a;
return *this;
}
FPS operator*(const T &a)const{ return FPS(*this)*=a; }
friend FPS operator*(const T&a,const FPS&f){return f*a;}
FPS operator/(const FPS g)const{ return (*this)*g.inv(); }
FPS&operator/=(const FPS&g){ return (*this)=(*this)/g; }
FPS&operator/=(const T &a){ return *this *= a.inv(); }
FPS operator/(const T &a){ return FPS(*this)/=a; }
FPS&operator<<=(const int d){
if(d>=MX)return *this=FPS(0);
resize(min(MX,int(size())+d));
for(int i=int(size())-1-d;i>=0;i--)
at(i+d)=at(i);
for(int i=d-1;i>=0;i--)at(i)=0;
return *this;
}
FPS operator<<(const int d)const{ return FPS(*this)<<=d; }
FPS&operator>>=(const int d){
if(d>=size())return *this=FPS(0);
for(int i=d;i<size();i++)
at(i-d)=at(i);
strict(int(size())-d);
return *this;
}
FPS operator>>(const int d)const{ return FPS(*this)>>=d; }
#pragma endregion operator
FPS pre(int n)const{
if(size()<=n)return *this;
return FPS(begin(),begin()+n);
}
FPS inv(int SZ=MX)const{
assert(size() and at(0)!=0);
FPS res(1,at(0).inv());
for(int n=0;(1<<n)<SZ;n++){
res *= (2- (res*pre(1<<(n+1))).pre(1<<(n+1)));
res.strict(1<<(n+1));
}
return res.pre(SZ);
}
FPS pow(long long n)const{
assert(n>=0);
if(n==0)return unit();
if(n==1)return *this;
FPS now=*this;
now.shrink();
if(!now.size())return now;
int d;
for(d=0;d<now.size() and now[d]==0;d++){}
if(d>=(MX+n-1)/n)return FPS(0);
now >>= d;
d *= n;
if(at(0)==1)return exp(n*log(now))<<d;
FPS res=unit();
while(n){
if(n&1)res*=now;
now*=now;
n>>=1;
}
return res<<d;
}
FPS separate(int n){
if(size()<=n)return FPS(0);
FPS f_2(size()-n);
for(int i=n;i<size();i++)f_2[i-n]=at(i);
strict(n);
return f_2;
}
FPS operator()(FPS g)const{
assert(!g.size() or g[0]==0); // 自身が多項式なら g[0]!=0 でも良い
if(size()==0)return *this;
if(size()==1)return FPS(1,at(0));
if(size()==2)return FPS(at(0)+at(1)*g);
int m=sqrt(MX/20);
FPS&g1=g;
FPS g2=g1.separate(m);
int z;
for(z=1;z<g1.size() and g1[z]==0;z++){}
if(z==g1.size()){
FPS res(0),
g2pow=FPS::unit();
for(int i=0;i*m<MX and i<size();i++,g2pow*=g2)
res += at(i) * g2pow<<(i*m);
return res;
}
auto rec=[&](auto rec,int l,int d){
if(d==0 or l>=size())return FPS(0);
if(d==1)return FPS(1,at(l));
if(d==2)return at(l) + (l+1<size()?at(l+1)*g1:FPS(0));
FPS f1=rec(rec,l,d>>1);
FPS f2=rec(rec,l+(d>>1),d-(d>>1));
f2 *= g1.pow(d>>1);
return f1+f2;
};
FPS res = rec(rec,0,size());
FPS dfg=res,
g1inv=(differential(g)>>(--z)).inv(),
g2pow=FPS::unit();
T factinv=1;
for(int i=1;i*m<MX;i++){
dfg=(differential(dfg)>>z)*g1inv;
dfg.strict(MX-m*i);
(g2pow*=g2).strict(MX-m*i);
factinv /= i;
res += factinv * (dfg * g2pow) << (m*i);
}
return res;
}
T operator()(T a)const{
T res=0,b=1;
for(int i=0;i<size();i++,b*=a)
res += at(i)*b;
return res;
}
void taylor_shift(T c){
shrink();
if(size()<=1 or c==0)return;
int n=size();
T fact=1;
REP_(i,n){
if(i)fact*=i;
at(i)*=fact;
}
reverse(begin(),end());
*this *= exp(c).pre(n);
strict(n);
reverse(begin(),end());
T finv=fact.inv();
for(int i=n-1;i>=0;i--){
at(i)*=finv;
finv *= i;
}
}
static FPS differential(FPS f){
if(f.size()<=1)return FPS(0);
REP_(i,f.size()-1)f[i]=(i+1)*f[i+1];
f.resize(f.size()-1);
return f;
}
static FPS integral(FPS f){
if(f.size()<MX)f.resize(f.size()+1);
for(int i=f.size()-1;i>0;i--)f[i]=f[i-1]/i;
f[0]=0;
return f;
}
static FPS log(const FPS&f){
assert(f.size() and f[0]==1);
return integral(differential(f)/f);
}
static FPS exp(const FPS f){
if(!f.size())return unit();
assert(f[0]==0);
FPS res=unit();
for(int n=0;(1<<n)<MX;n++){
res *= (f.pre(1<<(n+1))+1-log(res).pre(1<<(n+1)));
res.strict(1<<(n+1));
}
return res;
}
static FPS exp(const T n){
if(n==0)return unit();
FPS res(MX,1);
for(int i=1;i<MX;i++)res[i]=res[i-1]*n/i;
return res;
}
};
#undef REP_
using FPS = FormalPowerSeries<mint, 200001>;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
long long n, m;
std::cin >> n >> m;
FPS f(n + 1);
for (int i = 0; i <= n; i++)
f[i] = i;
f /= 1 + f;
for (int i = 0; i < f.size(); i++)
f[i] *= std::max(m - i + 1, 0LL);
f /= 1 - f;
std::cout << f[n] << '\n';
}
cureskol