結果

問題 No.2670 Sum of Products of Interval Lengths
ユーザー cureskolcureskol
提出日時 2024-03-05 20:35:32
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 327 ms / 2,000 ms
コード長 6,873 bytes
コンパイル時間 3,812 ms
コンパイル使用メモリ 247,200 KB
実行使用メモリ 15,932 KB
最終ジャッジ日時 2024-09-29 18:04:31
合計ジャッジ時間 9,312 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 222 ms
14,376 KB
testcase_01 AC 312 ms
15,852 KB
testcase_02 AC 293 ms
15,736 KB
testcase_03 AC 256 ms
15,544 KB
testcase_04 AC 293 ms
15,728 KB
testcase_05 AC 312 ms
15,804 KB
testcase_06 AC 310 ms
15,776 KB
testcase_07 AC 291 ms
15,256 KB
testcase_08 AC 261 ms
14,556 KB
testcase_09 AC 291 ms
14,760 KB
testcase_10 AC 306 ms
15,436 KB
testcase_11 AC 320 ms
15,776 KB
testcase_12 AC 315 ms
15,932 KB
testcase_13 AC 312 ms
15,732 KB
testcase_14 AC 309 ms
15,732 KB
testcase_15 AC 327 ms
15,860 KB
testcase_16 AC 319 ms
15,856 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#include <atcoder/convolution>
#include <atcoder/modint>
using namespace atcoder;
using mint = modint998244353;
namespace atcoder {
ostream &operator<<(ostream &os, mint a) {
  os << a.val();
  return os;
}
istream &operator>>(istream &is, mint &a) {
  long long b;
  is >> b;
  a = b;
  return is;
}
} // namespace atcoder

#define REP_(i,n) for(int i=0;i<(n);i++)
template<typename T,int MX>
struct FormalPowerSeries:vector<T>{
  using FPS=FormalPowerSeries;
  using vector<T>::resize;
  using vector<T>::size;
  using vector<T>::at;
  using vector<T>::assign;
  using vector<T>::vector;
  using vector<T>::begin;
  using vector<T>::end;
  using vector<T>::back;
  using vector<T>::pop_back;
  using value_type=T;

  void strict(int n){ if(size()>n)resize(n); }
  void shrink(){ while(size() and back()==0)pop_back(); }

  FormalPowerSeries(const vector<T>&f){
    int n=min(MX,int(f.size()));
    resize(n);
    REP_(i,n)at(i)=f[i];
    shrink();
  }

  static FPS unit(){ return {1}; }
  static FPS x(){ return {0,1}; }
#pragma region operator
  FPS operator-()const{
    FPS g=*this;
    for(T&a:g)a=-a;
    return g;
  }
  
  FPS &operator+=(const FPS&g){
    if(size()<g.size())resize(g.size());
    REP_(i,g.size())at(i)+=g[i];
    return *this;
  }
  FPS operator+(const FPS &g)const{return FPS(*this)+=g;}

  FPS &operator+=(const T &a){
    if(!size())resize(1);
    at(0)+=a;
    return *this;
  }
  FPS operator+(const T& a)const{return FPS(*this)+=a;}
  friend FPS operator+(const T&a,const FPS&f){return f+a;}

  FPS &operator-=(const FPS &g){
    if(size()<g.size())resize(g.size());
    REP_(i,g.size())at(i)-=g[i];
    return *this;
  }
  FPS operator-(const FPS &g)const{return FPS(*this)-=g;}

  FPS &operator-=(const T &a){
    if(!size())resize(1);
    at(0)-=a;
    return *this;
  }
  FPS operator-(const T& a){return FPS(*this)-=a;}
  friend FPS operator-(const T&a,const FPS&f){return a+(-f);}
  
  FPS operator*(const FPS&g)const{ return FPS(convolution(*this,g)); }
  FPS&operator*=(const FPS&g){ return (*this)=(*this)*g; }

  FPS&operator*=(const T &a){
    REP_(i,size())at(i)*=a;
    return *this;
  }
  FPS operator*(const T &a)const{ return FPS(*this)*=a; }
  friend FPS operator*(const T&a,const FPS&f){return f*a;}

  FPS operator/(const FPS g)const{ return (*this)*g.inv(); }
  FPS&operator/=(const FPS&g){ return (*this)=(*this)/g; }

  FPS&operator/=(const T &a){ return *this *= a.inv(); }
  FPS operator/(const T &a){ return  FPS(*this)/=a; }

  FPS&operator<<=(const int d){
    if(d>=MX)return *this=FPS(0);
    resize(min(MX,int(size())+d));
    for(int i=int(size())-1-d;i>=0;i--)
      at(i+d)=at(i);
    for(int i=d-1;i>=0;i--)at(i)=0;
    return *this;
  }
  FPS operator<<(const int d)const{ return FPS(*this)<<=d; }
  FPS&operator>>=(const int d){
    if(d>=size())return *this=FPS(0);
    for(int i=d;i<size();i++)
      at(i-d)=at(i);
    strict(int(size())-d);
    return *this;
  }
  FPS operator>>(const int d)const{ return FPS(*this)>>=d; }
#pragma endregion operator

  FPS pre(int n)const{
    if(size()<=n)return *this;
    return FPS(begin(),begin()+n);
  }

  FPS inv(int SZ=MX)const{
    assert(size() and at(0)!=0);
    FPS res(1,at(0).inv());
    for(int n=0;(1<<n)<SZ;n++){
      res *= (2- (res*pre(1<<(n+1))).pre(1<<(n+1)));
      res.strict(1<<(n+1));
    }
    return res.pre(SZ);
  }

  FPS pow(long long n)const{
    assert(n>=0);
    if(n==0)return unit();
    if(n==1)return *this;

    FPS now=*this;
    now.shrink();
    if(!now.size())return now;
    int d;
    for(d=0;d<now.size() and now[d]==0;d++){}
    if(d>=(MX+n-1)/n)return FPS(0);
    now >>= d;
    d *= n;
    if(at(0)==1)return exp(n*log(now))<<d;
    FPS res=unit();
    while(n){
      if(n&1)res*=now;
      now*=now;
      n>>=1;
    }
    return res<<d;
  }

  FPS separate(int n){
    if(size()<=n)return FPS(0);
    FPS f_2(size()-n);
    for(int i=n;i<size();i++)f_2[i-n]=at(i);
    strict(n);
    return f_2;
  }

  FPS operator()(FPS g)const{
    assert(!g.size() or g[0]==0); // 自身が多項式なら g[0]!=0 でも良い
    if(size()==0)return *this;
    if(size()==1)return FPS(1,at(0));
    if(size()==2)return FPS(at(0)+at(1)*g);

    int m=sqrt(MX/20);
    FPS&g1=g;
    FPS g2=g1.separate(m);

    int z;
    for(z=1;z<g1.size() and g1[z]==0;z++){}
    if(z==g1.size()){
      FPS res(0),
          g2pow=FPS::unit();
      for(int i=0;i*m<MX and i<size();i++,g2pow*=g2)
        res += at(i) * g2pow<<(i*m);
      return res;
    }
    
    auto rec=[&](auto rec,int l,int d){
      if(d==0 or l>=size())return FPS(0);
      if(d==1)return FPS(1,at(l));
      if(d==2)return at(l) + (l+1<size()?at(l+1)*g1:FPS(0));
      FPS f1=rec(rec,l,d>>1);
      FPS f2=rec(rec,l+(d>>1),d-(d>>1));
      f2 *= g1.pow(d>>1);
      return f1+f2;
    };
    FPS res = rec(rec,0,size());

    FPS dfg=res,
        g1inv=(differential(g)>>(--z)).inv(),
        g2pow=FPS::unit();
    T factinv=1;
    
    for(int i=1;i*m<MX;i++){
      dfg=(differential(dfg)>>z)*g1inv;
      dfg.strict(MX-m*i);
      (g2pow*=g2).strict(MX-m*i);
      factinv /= i;
      res += factinv * (dfg * g2pow) << (m*i);
    }
    return res;
  }
  T operator()(T a)const{
    T res=0,b=1;
    for(int i=0;i<size();i++,b*=a)
      res += at(i)*b;
    return res;
  }

  void taylor_shift(T c){
    shrink();
    if(size()<=1 or c==0)return;
    int n=size();
    T fact=1;
    REP_(i,n){
      if(i)fact*=i;
      at(i)*=fact;
    }
    reverse(begin(),end());
    *this *= exp(c).pre(n);
    strict(n);
    reverse(begin(),end());
    T finv=fact.inv();
    for(int i=n-1;i>=0;i--){
      at(i)*=finv;
      finv *= i;
    }
  }

  static FPS differential(FPS f){
    if(f.size()<=1)return FPS(0);
    REP_(i,f.size()-1)f[i]=(i+1)*f[i+1];
    f.resize(f.size()-1);
    return f;
  }
  static FPS integral(FPS f){
    if(f.size()<MX)f.resize(f.size()+1);
    for(int i=f.size()-1;i>0;i--)f[i]=f[i-1]/i;
    f[0]=0;
    return f;
  }

  static FPS log(const FPS&f){
    assert(f.size() and f[0]==1);
    return integral(differential(f)/f);
  }
  static FPS exp(const FPS f){
    if(!f.size())return unit();
    assert(f[0]==0);
    FPS res=unit();
    for(int n=0;(1<<n)<MX;n++){
      res *= (f.pre(1<<(n+1))+1-log(res).pre(1<<(n+1)));
      res.strict(1<<(n+1));
    }
    return res;
  }
  static FPS exp(const T n){
    if(n==0)return unit();
    FPS res(MX,1);
    for(int i=1;i<MX;i++)res[i]=res[i-1]*n/i;
    return res;
  }
};
#undef REP_
using FPS = FormalPowerSeries<mint, 200001>;

int main() {
  std::ios::sync_with_stdio(false);
  std::cin.tie(nullptr);

  long long n, m;
  std::cin >> n >> m;

  FPS f(n + 1);
  for (int i = 0; i <= n; i++)
    f[i] = i;

  f /= 1 + f;

  for (int i = 0; i < f.size(); i++)
    f[i] *= std::max(m - i + 1, 0LL);

  f /= 1 - f;

  std::cout << f[n] << '\n';
}
0