結果
問題 | No.2670 Sum of Products of Interval Lengths |
ユーザー | cureskol |
提出日時 | 2024-03-05 20:35:32 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 327 ms / 2,000 ms |
コード長 | 6,873 bytes |
コンパイル時間 | 3,812 ms |
コンパイル使用メモリ | 247,200 KB |
実行使用メモリ | 15,932 KB |
最終ジャッジ日時 | 2024-09-29 18:04:31 |
合計ジャッジ時間 | 9,312 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 222 ms
14,376 KB |
testcase_01 | AC | 312 ms
15,852 KB |
testcase_02 | AC | 293 ms
15,736 KB |
testcase_03 | AC | 256 ms
15,544 KB |
testcase_04 | AC | 293 ms
15,728 KB |
testcase_05 | AC | 312 ms
15,804 KB |
testcase_06 | AC | 310 ms
15,776 KB |
testcase_07 | AC | 291 ms
15,256 KB |
testcase_08 | AC | 261 ms
14,556 KB |
testcase_09 | AC | 291 ms
14,760 KB |
testcase_10 | AC | 306 ms
15,436 KB |
testcase_11 | AC | 320 ms
15,776 KB |
testcase_12 | AC | 315 ms
15,932 KB |
testcase_13 | AC | 312 ms
15,732 KB |
testcase_14 | AC | 309 ms
15,732 KB |
testcase_15 | AC | 327 ms
15,860 KB |
testcase_16 | AC | 319 ms
15,856 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #include <atcoder/convolution> #include <atcoder/modint> using namespace atcoder; using mint = modint998244353; namespace atcoder { ostream &operator<<(ostream &os, mint a) { os << a.val(); return os; } istream &operator>>(istream &is, mint &a) { long long b; is >> b; a = b; return is; } } // namespace atcoder #define REP_(i,n) for(int i=0;i<(n);i++) template<typename T,int MX> struct FormalPowerSeries:vector<T>{ using FPS=FormalPowerSeries; using vector<T>::resize; using vector<T>::size; using vector<T>::at; using vector<T>::assign; using vector<T>::vector; using vector<T>::begin; using vector<T>::end; using vector<T>::back; using vector<T>::pop_back; using value_type=T; void strict(int n){ if(size()>n)resize(n); } void shrink(){ while(size() and back()==0)pop_back(); } FormalPowerSeries(const vector<T>&f){ int n=min(MX,int(f.size())); resize(n); REP_(i,n)at(i)=f[i]; shrink(); } static FPS unit(){ return {1}; } static FPS x(){ return {0,1}; } #pragma region operator FPS operator-()const{ FPS g=*this; for(T&a:g)a=-a; return g; } FPS &operator+=(const FPS&g){ if(size()<g.size())resize(g.size()); REP_(i,g.size())at(i)+=g[i]; return *this; } FPS operator+(const FPS &g)const{return FPS(*this)+=g;} FPS &operator+=(const T &a){ if(!size())resize(1); at(0)+=a; return *this; } FPS operator+(const T& a)const{return FPS(*this)+=a;} friend FPS operator+(const T&a,const FPS&f){return f+a;} FPS &operator-=(const FPS &g){ if(size()<g.size())resize(g.size()); REP_(i,g.size())at(i)-=g[i]; return *this; } FPS operator-(const FPS &g)const{return FPS(*this)-=g;} FPS &operator-=(const T &a){ if(!size())resize(1); at(0)-=a; return *this; } FPS operator-(const T& a){return FPS(*this)-=a;} friend FPS operator-(const T&a,const FPS&f){return a+(-f);} FPS operator*(const FPS&g)const{ return FPS(convolution(*this,g)); } FPS&operator*=(const FPS&g){ return (*this)=(*this)*g; } FPS&operator*=(const T &a){ REP_(i,size())at(i)*=a; return *this; } FPS operator*(const T &a)const{ return FPS(*this)*=a; } friend FPS operator*(const T&a,const FPS&f){return f*a;} FPS operator/(const FPS g)const{ return (*this)*g.inv(); } FPS&operator/=(const FPS&g){ return (*this)=(*this)/g; } FPS&operator/=(const T &a){ return *this *= a.inv(); } FPS operator/(const T &a){ return FPS(*this)/=a; } FPS&operator<<=(const int d){ if(d>=MX)return *this=FPS(0); resize(min(MX,int(size())+d)); for(int i=int(size())-1-d;i>=0;i--) at(i+d)=at(i); for(int i=d-1;i>=0;i--)at(i)=0; return *this; } FPS operator<<(const int d)const{ return FPS(*this)<<=d; } FPS&operator>>=(const int d){ if(d>=size())return *this=FPS(0); for(int i=d;i<size();i++) at(i-d)=at(i); strict(int(size())-d); return *this; } FPS operator>>(const int d)const{ return FPS(*this)>>=d; } #pragma endregion operator FPS pre(int n)const{ if(size()<=n)return *this; return FPS(begin(),begin()+n); } FPS inv(int SZ=MX)const{ assert(size() and at(0)!=0); FPS res(1,at(0).inv()); for(int n=0;(1<<n)<SZ;n++){ res *= (2- (res*pre(1<<(n+1))).pre(1<<(n+1))); res.strict(1<<(n+1)); } return res.pre(SZ); } FPS pow(long long n)const{ assert(n>=0); if(n==0)return unit(); if(n==1)return *this; FPS now=*this; now.shrink(); if(!now.size())return now; int d; for(d=0;d<now.size() and now[d]==0;d++){} if(d>=(MX+n-1)/n)return FPS(0); now >>= d; d *= n; if(at(0)==1)return exp(n*log(now))<<d; FPS res=unit(); while(n){ if(n&1)res*=now; now*=now; n>>=1; } return res<<d; } FPS separate(int n){ if(size()<=n)return FPS(0); FPS f_2(size()-n); for(int i=n;i<size();i++)f_2[i-n]=at(i); strict(n); return f_2; } FPS operator()(FPS g)const{ assert(!g.size() or g[0]==0); // 自身が多項式なら g[0]!=0 でも良い if(size()==0)return *this; if(size()==1)return FPS(1,at(0)); if(size()==2)return FPS(at(0)+at(1)*g); int m=sqrt(MX/20); FPS&g1=g; FPS g2=g1.separate(m); int z; for(z=1;z<g1.size() and g1[z]==0;z++){} if(z==g1.size()){ FPS res(0), g2pow=FPS::unit(); for(int i=0;i*m<MX and i<size();i++,g2pow*=g2) res += at(i) * g2pow<<(i*m); return res; } auto rec=[&](auto rec,int l,int d){ if(d==0 or l>=size())return FPS(0); if(d==1)return FPS(1,at(l)); if(d==2)return at(l) + (l+1<size()?at(l+1)*g1:FPS(0)); FPS f1=rec(rec,l,d>>1); FPS f2=rec(rec,l+(d>>1),d-(d>>1)); f2 *= g1.pow(d>>1); return f1+f2; }; FPS res = rec(rec,0,size()); FPS dfg=res, g1inv=(differential(g)>>(--z)).inv(), g2pow=FPS::unit(); T factinv=1; for(int i=1;i*m<MX;i++){ dfg=(differential(dfg)>>z)*g1inv; dfg.strict(MX-m*i); (g2pow*=g2).strict(MX-m*i); factinv /= i; res += factinv * (dfg * g2pow) << (m*i); } return res; } T operator()(T a)const{ T res=0,b=1; for(int i=0;i<size();i++,b*=a) res += at(i)*b; return res; } void taylor_shift(T c){ shrink(); if(size()<=1 or c==0)return; int n=size(); T fact=1; REP_(i,n){ if(i)fact*=i; at(i)*=fact; } reverse(begin(),end()); *this *= exp(c).pre(n); strict(n); reverse(begin(),end()); T finv=fact.inv(); for(int i=n-1;i>=0;i--){ at(i)*=finv; finv *= i; } } static FPS differential(FPS f){ if(f.size()<=1)return FPS(0); REP_(i,f.size()-1)f[i]=(i+1)*f[i+1]; f.resize(f.size()-1); return f; } static FPS integral(FPS f){ if(f.size()<MX)f.resize(f.size()+1); for(int i=f.size()-1;i>0;i--)f[i]=f[i-1]/i; f[0]=0; return f; } static FPS log(const FPS&f){ assert(f.size() and f[0]==1); return integral(differential(f)/f); } static FPS exp(const FPS f){ if(!f.size())return unit(); assert(f[0]==0); FPS res=unit(); for(int n=0;(1<<n)<MX;n++){ res *= (f.pre(1<<(n+1))+1-log(res).pre(1<<(n+1))); res.strict(1<<(n+1)); } return res; } static FPS exp(const T n){ if(n==0)return unit(); FPS res(MX,1); for(int i=1;i<MX;i++)res[i]=res[i-1]*n/i; return res; } }; #undef REP_ using FPS = FormalPowerSeries<mint, 200001>; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); long long n, m; std::cin >> n >> m; FPS f(n + 1); for (int i = 0; i <= n; i++) f[i] = i; f /= 1 + f; for (int i = 0; i < f.size(); i++) f[i] *= std::max(m - i + 1, 0LL); f /= 1 - f; std::cout << f[n] << '\n'; }