結果

問題 No.2670 Sum of Products of Interval Lengths
ユーザー nok0nok0
提出日時 2024-03-08 23:06:25
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 53 ms / 2,000 ms
コード長 60,614 bytes
コンパイル時間 3,593 ms
コンパイル使用メモリ 257,400 KB
実行使用メモリ 9,884 KB
最終ジャッジ日時 2024-09-29 20:35:33
合計ジャッジ時間 4,829 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "/home/nok0/documents/programming/library/math/fps.hpp"
#include <iostream>
#include <random>
#line 1 "/home/nok0/documents/programming/library/atcoder/convolution.hpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#line 1 "/home/nok0/documents/programming/library/atcoder/internal_bit.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#line 1 "/home/nok0/documents/programming/library/atcoder/modint.hpp"
#line 5 "/home/nok0/documents/programming/library/atcoder/modint.hpp"
#include <numeric>
#line 7 "/home/nok0/documents/programming/library/atcoder/modint.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
#line 1 "/home/nok0/documents/programming/library/atcoder/internal_math.hpp"
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#line 1 "/home/nok0/documents/programming/library/atcoder/internal_type_traits.hpp"
#line 7 "/home/nok0/documents/programming/library/atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#line 14 "/home/nok0/documents/programming/library/atcoder/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#line 12 "/home/nok0/documents/programming/library/atcoder/convolution.hpp"
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = bsf_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[bsf(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[bsf(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::ceil_pow2(n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[bsf(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[bsf(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#line 4 "/home/nok0/documents/programming/library/math/factorial.hpp"
template <class T>
struct factorial {
private:
int _n;
std::vector<T> _fac, _inv, _finv;
void extend(int n) {
n++;
if(n <= _n) return;
_fac.resize(n);
_inv.resize(n);
_finv.resize(n);
for(int i = _n; i < n; i++) {
_fac[i] = _fac[i - 1] * i;
_inv[i] = (-_inv[T::mod() % i]) * (T::mod() / i);
_finv[i] = _finv[i - 1] * _inv[i];
}
_n = n;
}
public:
explicit factorial(int n = 2) {
_n = 2;
_fac = {1, 1};
_inv = {1, 1};
_finv = {1, 1};
extend(n);
}
T fac(int k) {
if(k < 0) return 0;
extend(k);
return _fac[k];
}
T inv(int k) {
extend(k);
return _inv[k];
}
T finv(int k) {
extend(k);
return _finv[k];
}
T binom(int n, int k) {
if(k < 0 or n < k) return 0;
extend(n);
return _fac[n] * _finv[k] * _finv[n - k];
}
T large_binom(long long n, int k) {
if(k < 0 or n < k) return 0;
extend(k);
T ret = _finv[k];
for(int i = n; i > n - k; i--) ret *= i;
return ret;
}
T catalan(int n) {
extend(n * 2);
return binom(n * 2, n) * _inv[n + 1];
}
T perm(int n, int k) {
if(k < 0 or n < k) return 0;
extend(n);
return _fac[n] * _finv[n - k];
}
};
#line 8 "/home/nok0/documents/programming/library/math/fps.hpp"
enum Mode {
FAST = 1,
NAIVE = -1,
};
template <class T, Mode mode = FAST>
struct formal_power_series : std::vector<T> {
using std::vector<T>::vector;
using std::vector<T>::size;
using std::vector<T>::resize;
using std::vector<T>::begin;
using std::vector<T>::insert;
using std::vector<T>::erase;
using F = formal_power_series;
using S = std::vector<std::pair<int, T>>;
F &operator+=(const F &g) {
for(int i = 0; i < int(std::min((*this).size(), g.size())); i++) (*this)[i] += g[i];
return *this;
}
F &operator+=(const T &t) {
assert(int((*this).size()));
(*this)[0] += t;
return *this;
}
F &operator-=(const F &g) {
for(int i = 0; i < int(std::min((*this).size(), g.size())); i++) (*this)[i] -= g[i];
return *this;
}
F &operator-=(const T &t) {
assert(int((*this).size()));
(*this)[0] -= t;
return *this;
}
F &operator*=(const T &t) {
for(int i = 0; i < int((*this).size()); ++i) (*this)[i] *= t;
return *this;
}
F &operator/=(const T &t) {
T div = t.inv();
for(int i = 0; i < int((*this).size()); ++i) (*this)[i] *= div;
return *this;
}
F &operator>>=(const int sz) {
assert(sz >= 0);
int n = (*this).size();
(*this).erase((*this).begin(), (*this).begin() + std::min(sz, n));
(*this).resize(n);
return *this;
}
F &operator<<=(const int sz) {
assert(sz >= 0);
int n = (*this).size();
(*this).insert((*this).begin(), sz, T(0));
(*this).resize(n);
return *this;
}
F poly_div(const F &g) {
if(this->size() < g.size()) {
F ret(this->size());
return ret;
}
if(mode == FAST) {
auto ret = *this;
int old = this->size();
int n = old - g.size() + 1;
ret = ((*this).rev().pre(n) * g.rev().inv(n));
ret.rev_inplace();
ret.resize(old);
return ret;
} else {
assert(g.back() != T(0));
T igb = g.back().inv();
int n = (*this).size(), m = g.size();
F this_copy(*this);
F ret(n);
for(int i = n - 1; i >= m - 1; --i) {
T mul = this_copy[i] * igb;
ret[i - m + 1] = mul;
for(int j = i; j > i - m; j--)
this_copy[j] -= g[j - i + m - 1] * mul;
}
return ret;
}
}
//
F &operator%=(const F &g) {
return *this -= this->poly_div(g) * g;
}
F &operator=(const std::vector<T> &v) {
int n = (*this).size();
for(int i = 0; i < n; ++i) (*this)[i] = v[i];
return *this;
}
F operator-() const {
F ret = *this;
return ret * -1;
}
F &operator*=(const F &g) {
if(mode == FAST) {
int n = (*this).size();
auto tmp = atcoder::convolution(*this, g);
for(int i = 0; i < n; ++i) (*this)[i] = tmp[i];
return *this;
} else {
int n = (*this).size(), m = g.size();
for(int i = n - 1; i >= 0; --i) {
(*this)[i] *= g[0];
for(int j = 1; j < std::min(i + 1, m); j++)
(*this)[i] += (*this)[i - j] * g[j];
}
return *this;
}
}
F &operator/=(const F &g) {
if((*this).size() < g.size()) {
(*this).assign((*this).size(), T(0));
return *this;
}
if(mode == FAST) {
*this *= g.inv();
return *this;
} else {
assert(g[0] != T(0));
T ig0 = g[0].inv();
int n = (*this).size(), m = g.size();
for(int i = 0; i < n; ++i) {
for(int j = 1; j < std::min(i + 1, m); ++j)
(*this)[i] -= (*this)[i - j] * g[j];
(*this)[i] *= ig0;
}
return *this;
}
}
F &operator*=(S g) {
int n = (*this).size();
auto [d, c] = g.front();
if(!d)
g.erase(g.begin());
else
c = 0;
for(int i = n - 1; i >= 0; --i) {
(*this)[i] *= c;
for(auto &[j, b] : g) {
if(j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F &operator/=(S g) {
int n = (*this).size();
auto [d, c] = g.front();
assert(!d and c != 0);
T ic = c.inv();
g.erase(g.begin());
for(int i = 0; i < n; ++i) {
for(auto &[j, b] : g) {
if(j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
F operator+(const F &g) const { return F(*this) += g; }
F operator+(const T &t) const { return F(*this) += t; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator-(const T &t) const { return F(*this) -= t; }
F operator*(const F &g) const { return F(*this) *= g; }
F operator*(const T &t) const { return F(*this) *= t; }
F operator/(const F &g) const { return F(*this) /= g; }
F operator/(const T &t) const { return F(*this) /= t; }
F operator%(const F &g) const { return F(*this) %= g; }
F operator*=(const S &g) const { return F(*this) *= g; }
F operator/=(const S &g) const { return F(*this) /= g; }
F operator<<(const int sz) const { return F(*this) <<= sz; }
F operator>>(const int sz) const { return F(*this) >>= sz; }
F pre(int d) const { return F((*this).begin(), (*this).begin() + std::min((int)(*this).size(), d)); }
F &shrink() {
while(!(*this).empty() and (*this).back() == T(0)) (*this).pop_back();
return *this;
}
F &rev_inplace() {
reverse((*this).begin(), (*this).end());
return *this;
}
F rev() const { return F(*this).rev_inplace(); }
// *=(1 + cz^d)
F &multiply(const int d, const T c) {
int n = (*this).size();
if(c == T(1))
for(int i = n - d - 1; i >= 0; --i)
(*this)[i + d] += (*this)[i];
else if(c == T(-1))
for(int i = n - d - 1; i >= 0; --i)
(*this)[i + d] -= (*this)[i];
else
for(int i = n - d - 1; i >= 0; --i)
(*this)[i + d] += (*this)[i] * c;
return *this;
}
// /=(1 + cz^d)
F &divide(const int d, const T c) {
int n = (*this).size();
if(c == T(1))
for(int i = 0; i < n - d; ++i) (*this)[i + d] -= (*this)[i];
else if(c == T(-1))
for(int i = 0; i < n - d; ++i) (*this)[i + d] += (*this)[i];
else
for(int i = 0; i < n - d; ++i) (*this)[i + d] -= (*this)[i] * c;
return *this;
}
// Ο(N)
T eval(const T &t) const {
int n = (*this).size();
T res = 0, tmp = 1;
for(int i = 0; i < n; ++i) res += (*this)[i] * tmp, tmp *= t;
return res;
}
F inv(int deg = -1) const {
int n = (*this).size();
assert(mode == FAST and n and (*this)[0] != 0);
if(deg == -1) deg = n;
assert(deg > 0);
F res{(*this)[0].inv()};
while(int(res.size()) < deg) {
int m = res.size();
F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res);
f.resize(m * 2), atcoder::internal::butterfly(f);
r.resize(m * 2), atcoder::internal::butterfly(r);
for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(m * 2), atcoder::internal::butterfly(f);
for(int i = 0; i < m * 2; ++i) f[i] *= r[i];
atcoder::internal::butterfly_inv(f);
T iz = T(m * 2).inv();
iz *= -iz;
for(int i = 0; i < m; ++i) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
res.resize(deg);
return res;
}
// Ο(N)
F &diff_inplace() {
int n = (*this).size();
for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i;
(*this)[n - 1] = 0;
return *this;
}
F diff() const { return F(*this).diff_inplace(); }
// Ο(N)
F &integral_inplace() {
int n = (*this).size(), mod = T::mod();
std::vector<T> inv(n);
{
inv[1] = 1;
for(int i = 2; i < n; ++i)
inv[i] = T(mod) - inv[mod % i] * (mod / i);
}
for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1];
(*this)[0] = 0;
return *this;
}
F integral() const { return F(*this).integral_inplace(); }
// Ο(NlogN)
F &log_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 1);
F f_inv = (*this).inv();
(*this).diff_inplace();
(*this) *= f_inv;
(*this).integral_inplace();
return *this;
}
F log() const { return F(*this).log_inplace(); }
// Ο(NlogN)
F &deriv_inplace() {
int n = (*this).size();
assert(n);
for(int i = 2; i < n; ++i) (*this)[i] *= i;
(*this).erase((*this).begin());
(*this).push_back(0);
return *this;
}
F deriv() const { return F(*this).deriv_inplace(); }
// Ο(NlogN)
F &exp_inplace() {
int n = (*this).size();
assert(n and (*this)[0] == 0);
F g{1};
(*this)[0] = 1;
F h_drv((*this).deriv());
for(int m = 1; m < n; m *= 2) {
F f((*this).begin(), (*this).begin() + m);
f.resize(2 * m), atcoder::internal::butterfly(f);
auto mult_f = [&](F &p) {
p.resize(2 * m);
atcoder::internal::butterfly(p);
for(int i = 0; i < 2 * m; ++i) p[i] *= f[i];
atcoder::internal::butterfly_inv(p);
p /= 2 * m;
};
if(m > 1) {
F g_(g);
g_.resize(2 * m), atcoder::internal::butterfly(g_);
for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i];
atcoder::internal::butterfly_inv(g_);
T iz = T(-2 * m).inv();
g_ *= iz;
g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m);
}
F t((*this).begin(), (*this).begin() + m);
t.deriv_inplace();
{
F r{h_drv.begin(), h_drv.begin() + m - 1};
mult_f(r);
for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i];
}
t.insert(t.begin(), t.back());
t.pop_back();
t *= g;
F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m));
v.resize(m);
t.insert(t.begin(), m - 1, 0);
t.push_back(0);
t.integral_inplace();
for(int i = 0; i < m; ++i) v[i] -= t[m + i];
mult_f(v);
for(int i = 0; i < std::min(n - m, m); ++i)
(*this)[m + i] = v[i];
}
return *this;
}
F exp() const { return F(*this).exp_inplace(); }
// Ο(NlogN)
F &pow_inplace(long long k) {
int n = (*this).size(), l = 0;
assert(k >= 0);
if(!k) {
for(int i = 0; i < n; ++i) (*this)[i] = !i;
return *this;
}
while(l < n and (*this)[l] == 0) ++l;
if(l > (n - 1) / k or l == n) return *this = F(n);
T c = (*this)[l];
(*this).erase((*this).begin(), (*this).begin() + l);
(*this) /= c;
(*this).log_inplace();
(*this).resize(n - l * k);
(*this) *= k;
(*this).exp_inplace();
(*this) *= c.pow(k);
(*this).insert((*this).begin(), l * k, 0);
return *this;
}
F pow(const long long k) const { return F(*this).pow_inplace(k); }
// Ο(NlogN)
F sqrt(int deg = -1) const {
auto SQRT = [&](T t) {
int mod = T::mod();
if(t == 0 or t == 1) return t;
int v = (mod - 1) / 2;
if(t.pow(v) != 1) return T(-1);
int q = mod - 1, m = 0;
while(~q & 1) q >>= 1, m++;
std::mt19937 mt;
T z = mt();
while(z.pow(v) != mod - 1) z = mt();
T c = z.pow(q), u = t.pow(q), r = t.pow((q + 1) / 2);
for(; m > 1; m--) {
T tmp = u.pow(1 << (m - 2));
if(tmp != 1) r = r * c, u = u * c * c;
c = c * c;
}
return T(std::min(r.val(), mod - r.val()));
};
int n = (*this).size();
if(deg == -1) deg = n;
if((*this)[0] == 0) {
for(int i = 1; i < n; i++) {
if((*this)[i] != 0) {
if(i & 1) return F(0);
if(deg - i / 2 <= 0) break;
auto ret = (*this);
ret >>= i;
ret.resize(n - i);
ret = ret.sqrt(deg - i / 2);
if(ret.empty()) return F(0);
ret <<= (i / 2);
ret.resize(deg);
return ret;
}
}
return F(deg);
}
auto sqr = SQRT((*this)[0]);
if(sqr * sqr != (*this)[0]) return F(0);
F ret{sqr};
T ti = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
auto u = (*this);
u.resize(i << 1);
ret = (ret.inv(i << 1) * u + ret) * ti;
}
ret.resize(deg);
return ret;
}
void sparse_pow(const int n, const int d, const T c, const int k, factorial<T> &fact) {
F ret(n);
T tmp = 1;
if(k >= 0) {
for(int i = 0; i < n; i += d) {
ret[i] = fact.binom(k, i / d) * tmp;
tmp *= c;
}
} else {
for(int i = 0; i < n; i += d) {
ret[i] = fact.binom(i / d - k - 1, -k - 1) * tmp;
tmp *= -c;
}
}
(*this) = ret;
}
void sparse_pow_inv(const int n, const int d, const T c, const int k, factorial<T> &fact) { return sparse_pow(n, d, c, -k, fact); }
void stirling_first(int n, factorial<T> &fact) {
if(!n) {
*this = F{1};
return;
}
int m = 1;
F res(n + 1);
res[1] = 1;
for(int k = 30 - __builtin_clz(n); k >= 0; --k) {
F as(m * 2 + 1), bs(m + 1);
for(int i = 0; i <= m; i++)
as[i] = fact.fac(i) * res[i];
bs[m] = 1;
for(int i = m - 1; i >= 0; i--)
bs[i] -= bs[i + 1] * m;
for(int i = 0; i <= m; i++)
bs[m - i] *= fact.finv(i);
F cs = as * bs, ds(m + 1);
for(int i = 0; i <= m; i++)
ds[i] = cs[m + i] * fact.finv(i);
res *= ds;
m <<= 1;
if(n >> k & 1) {
F g(n + 1);
for(int i = 0; i <= m; i++) {
g[i] -= res[i] * m;
g[i + 1] += res[i];
}
res = g;
m |= 1;
}
}
*this = res;
}
void stirling_second(int n, factorial<T> &fact) {
F f(n + 1), g(n + 1);
for(int i = 0; i <= n; i++) {
f[i] = T(i).pow(n) * fact.finv(i);
g[i] = fact.finv(i) * (i % 2 ? -1 : 1);
}
f *= g;
*this = f;
}
// return f(x + c)
F taylor_shift(int c, factorial<T> &fact) const {
F f(*this);
int n = this->size();
for(int i = 0; i < n; i++) f[i] *= fact.fac(i);
reverse(f.begin(), f.end());
F g(n, 1);
T mul = 1;
for(int i = 1; i < n; i++)
g[i] = (mul *= c) * fact.finv(i);
f *= g;
reverse(f.begin(), f.end());
for(int i = 0; i < n; i++) f[i] *= fact.finv(i);
return f;
}
F taylor_shift(T c, factorial<T> &fact) const { return taylor_shift(c.val(), fact); }
template <class U>
std::vector<T> multipoint_evaluation(const std::vector<U> &p) {
using fps = formal_power_series<T, mode>;
int m = p.size();
int n = 1 << std::max(atcoder::internal::ceil_pow2(m), 1);
std::vector<fps> subproducts(2 * n, F{1}), rem(2 * n);
for(int i = n; i < n + m; i++) subproducts[i] = fps({-p[i - n], 1});
for(int i = n - 1; i; i--) {
int x = subproducts[i << 1].size(), y = subproducts[i << 1 | 1].size();
subproducts[i] = subproducts[i << 1];
subproducts[i].resize(x + y - 1);
subproducts[i] *= subproducts[i << 1 | 1];
}
rem[1] = *this;
for(int i = 1; i < n; i++) {
rem[i << 1] = rem[i] % subproducts[i << 1];
rem[i << 1].shrink();
rem[i << 1 | 1] = rem[i] % subproducts[i << 1 | 1];
rem[i << 1 | 1].shrink();
}
std::vector<T> res(m);
for(int i = 0; i < m; i++) res[i] = (!rem[i + n].empty() ? rem[i + n][0] : 0);
return res;
}
};
#line 3 "/home/nok0/documents/programming/library/math/modint_iostream.hpp"
#line 5 "/home/nok0/documents/programming/library/math/modint_iostream.hpp"
template<int m>
std::istream &std::operator>>(std::istream &is, atcoder::static_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
template<int m>
std::istream &std::operator>>(std::istream &is, atcoder::dynamic_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
template<int m>
std::ostream &std::operator<<(std::ostream &os, const atcoder::static_modint<m> &a) { return os << a.val(); }
template<int m>
std::ostream &std::operator<<(std::ostream &os, const atcoder::dynamic_modint<m> &a) { return os << a.val(); }
#line 2 "/home/nok0/documents/programming/library/template/header.hpp"
#include <bits/stdc++.h>
#line 3 "/home/nok0/documents/programming/library/template/def_const.hpp"
const int inf = 1000000000;
const long long INF = 1000000000000000000ll;
#line 4 "/home/nok0/documents/programming/library/template/debug.hpp"
namespace viewer {
void view(const long long &e) {
if(e == INF)
std::cerr << "INF";
else if(e == -INF)
std::cerr << "-INF";
else
std::cerr << e;
}
void view(const int &e) {
if(e == inf)
std::cerr << "inf";
else if(e == -inf)
std::cerr << "-inf";
else
std::cerr << e;
}
template <typename T>
void view(const T &e) {
std::cerr << e;
}
template <typename T, typename U>
void view(const std::pair<T, U> &p) {
std::cerr << "(";
view(p.first);
std::cerr << ", ";
view(p.second);
std::cerr << ")";
}
template <class T0, class T1, class T2>
void view(const std::tuple<T0, T1, T2> &p) {
std::cerr << "(";
view(std::get<0>(p));
std::cerr << ", ";
view(std::get<1>(p));
std::cerr << ", ";
view(std::get<2>(p));
std::cerr << ")";
}
template <class T0, class T1, class T2, class T3>
void view(const std::tuple<T0, T1, T2, T3> &p) {
std::cerr << "(";
view(std::get<0>(p));
std::cerr << ", ";
view(std::get<1>(p));
std::cerr << ", ";
view(std::get<2>(p));
std::cerr << ", ";
view(std::get<3>(p));
std::cerr << ")";
}
template <typename T>
void view(const std::set<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::unordered_set<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::multiset<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::unordered_multiset<T> &s) {
if(s.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(auto &t : s) {
view(t);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<T> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(const auto &e : v) {
view(e);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T, std::size_t ary_size>
void view(const std::array<T, ary_size> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << "{ ";
for(const auto &e : v) {
view(e);
std::cerr << ", ";
}
std::cerr << "\b\b }";
}
template <typename T>
void view(const std::vector<std::vector<T>> &vv) {
std::cerr << "{\n";
for(const auto &v : vv) {
std::cerr << "\t";
view(v);
std::cerr << '\n';
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::vector<std::pair<T, U>> &v) {
std::cerr << "{\n";
for(const auto &c : v) {
std::cerr << "\t(";
view(c.first);
std::cerr << ", ";
view(c.second);
std::cerr << ")\n";
}
std::cerr << "}";
}
template <class T0, class T1, class T2>
void view(const std::vector<std::tuple<T0, T1, T2>> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << '{';
for(const auto &t : v) {
std::cerr << "\n\t";
view(t);
std::cerr << ",";
}
std::cerr << "\n}";
}
template <class T0, class T1, class T2, class T3>
void view(const std::vector<std::tuple<T0, T1, T2, T3>> &v) {
if(v.empty()) {
std::cerr << "{ }";
return;
}
std::cerr << '{';
for(const auto &t : v) {
std::cerr << "\n\t";
view(t);
std::cerr << ",";
}
std::cerr << "\n}";
}
template <typename T, typename U>
void view(const std::map<T, U> &m) {
std::cerr << "{\n";
for(const auto &t : m) {
std::cerr << "\t[";
view(t.first);
std::cerr << "] : ";
view(t.second);
std::cerr << '\n';
}
std::cerr << "}";
}
template <typename T, typename U>
void view(const std::unordered_map<T, U> &m) {
std::cerr << "{\n";
for(const auto &t : m) {
std::cerr << "\t[";
view(t.first);
std::cerr << "] : ";
view(t.second);
std::cerr << '\n';
}
std::cerr << "}";
}
} // namespace viewer
// when compiling : g++ foo.cpp -DLOCAL
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
viewer::view(H);
std::cerr << ", ";
debug_out(T...);
}
#define debug(...) \
do { \
std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
debug_out(__VA_ARGS__); \
std::cerr << "\b\b]\n"; \
} while(0)
#define dump(x) \
do { \
std::cerr << __LINE__ << " " << #x << " : "; \
viewer::view(x); \
std::cerr << '\n'; \
} while(0)
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
#line 3 "/home/nok0/documents/programming/library/template/def_name.hpp"
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define popcnt(x) __builtin_popcountll(x)
template <class T = int>
using V = std::vector<T>;
template <class T = int>
using VV = std::vector<std::vector<T>>;
template <class T>
using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;
using ll = long long;
using ld = long double;
using int128 = __int128_t;
using pii = std::pair<int, int>;
using pll = std::pair<long long, long long>;
#line 3 "/home/nok0/documents/programming/library/template/fast_io.hpp"
struct fast_io {
fast_io() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(15);
}
} fast_io_;
#line 3 "/home/nok0/documents/programming/library/template/input.hpp"
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
for(T &i : v) is >> i;
return is;
}
std::istream &operator>>(std::istream &is, __int128_t &a) {
std::string s;
is >> s;
__int128_t ret = 0;
for(int i = 0; i < (int)s.length(); i++)
if('0' <= s[i] and s[i] <= '9')
ret = 10 * ret + s[i] - '0';
a = ret * (s[0] == '-' ? -1 : 1);
return is;
}
namespace scanner {
void scan(int &a) { std::cin >> a; }
void scan(long long &a) { std::cin >> a; }
void scan(std::string &a) { std::cin >> a; }
void scan(char &a) { std::cin >> a; }
void scan(char a[]) { std::ignore = std::scanf("%s", a); }
void scan(double &a) { std::cin >> a; }
void scan(long double &a) { std::cin >> a; }
template <class T, class U>
void scan(std::pair<T, U> &p) { std::cin >> p; }
template <class T>
void scan(std::vector<T> &a) { std::cin >> a; }
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &...tail) {
scan(head);
INPUT(tail...);
}
} // namespace scanner
#define VEC(type, name, size) \
std::vector<type> name(size); \
scanner::INPUT(name)
#define VVEC(type, name, h, w) \
std::vector<std::vector<type>> name(h, std::vector<type>(w)); \
scanner::INPUT(name)
#define INT(...) \
int __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LL(...) \
long long __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define STR(...) \
std::string __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define DOUBLE(...) \
double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
scanner::INPUT(__VA_ARGS__)
#line 3 "/home/nok0/documents/programming/library/template/math.hpp"
template <class T, class U>
inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <class T, class U>
inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <class T>
T divup(T x, T y) { return (x + y - 1) / y; }
template <class T>
T POW(T a, long long n) {
T ret = 1;
while(n) {
if(n & 1) ret *= a;
a *= a;
n >>= 1;
}
return ret;
}
long long POW(long long a, long long n, const int mod) {
long long ret = 1;
a = (a % mod + mod) % mod;
while(n) {
if(n & 1) (ret *= a) %= mod;
(a *= a) %= mod;
n >>= 1;
}
return ret;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f) {
while(abs(ok - ng) > 1) {
T mid = (ok + ng) >> 1;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f, int loop) {
for(int i = 0; i < loop; i++) {
T mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
#line 3 "/home/nok0/documents/programming/library/template/output.hpp"
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
for(int i = 0; i < int(a.size()); ++i) {
if(i) os << " ";
os << a[i];
}
return os;
}
std::ostream &operator<<(std::ostream &dest, __int128_t &value) {
std::ostream::sentry s(dest);
if(s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while(tmp != 0);
if(value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if(dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
template <class T>
void print(const T a) { std::cout << a << '\n'; }
template <class Head, class... Tail>
void print(Head H, Tail... T) {
std::cout << H << ' ';
print(T...);
}
template <class T>
void println(const T a) { std::cout << a << '\n'; }
template <class T>
void println(const std::vector<T> &a) {
for(const auto &v : a)
std::cout << v << '\n';
}
template <class Head, class... Tail>
void println(Head H, Tail... T) {
std::cout << H << '\n';
println(T...);
}
void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); }
void No() { std::cout << "No\n"; }
void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); }
void NO() { std::cout << "NO\n"; }
#line 2 "/home/nok0/documents/programming/library/template/rep.hpp"
#define foa(v, a) for (auto &v : a)
#define repname(a, b, c, d, e, ...) e
#define rep(...) repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x) for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x) for (int i = 0; i < (x); ++i)
#define rep2(i, l, r) for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c) for (int i = (l); i < (r); i += (c))
#define repsname(a, b, c, ...) c
#define reps(...) repsname(__VA_ARGS__, reps1, reps0)(__VA_ARGS__)
#define reps0(x) for (int reps_counter = 1; reps_counter <= (x); ++reps_counter)
#define reps1(i, x) for (int i = 1; i <= (x); ++i)
#define rrepname(a, b, c, ...) c
#define rrep(...) rrepname(__VA_ARGS__, rrep1, rrep0)(__VA_ARGS__)
#define rrep0(x) for (int rrep_counter = (x)-1; rrep_counter >= 0; --rrep_counter)
#define rrep1(i, x) for (int i = (x)-1; i >= 0; --i)
#line 3 "/home/nok0/documents/programming/library/template/string_converter.hpp"
struct string_converter {
char start = 0;
char type(const char &c) const { return (islower(c) ? 'a' : isupper(c) ? 'A' :
isdigit(c) ? '0' :
0); }
int convert(const char &c) {
if(!start) start = type(c);
return c - start;
}
int convert(const char &c, const std::string &chars) { return chars.find(c); }
template <typename T>
auto convert(const T &v) {
std::vector<decltype(convert(v[0]))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e));
return ret;
}
template <typename T>
auto convert(const T &v, const std::string &chars) {
std::vector<decltype(convert(v[0], chars))> ret;
ret.reserve(size(v));
for(auto &&e : v) ret.emplace_back(convert(e, chars));
return ret;
}
int operator()(const char &v, char s = 0) {
start = s;
return convert(v);
}
int operator()(const char &v, const std::string &chars) { return convert(v, chars); }
template <typename T>
auto operator()(const T &v, char s = 0) {
start = s;
return convert(v);
}
template <typename T>
auto operator()(const T &v, const std::string &chars) { return convert(v, chars); }
} toint;
#line 3 "/home/nok0/documents/programming/library/template/vector.hpp"
template <class T>
int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }
template <class T>
int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }
template <class T>
void UNIQUE(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <class T>
std::vector<T> press(std::vector<T> &a) {
auto res = a;
UNIQUE(res);
for(auto &v : a)
v = lb(res, v);
return res;
}
#define SORTname(a, b, c, ...) c
#define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)
#define SORT0(a) std::sort((a).begin(), (a).end())
#define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })
template <class T>
void ADD(std::vector<T> &a, const T x = 1) {
for(auto &v : a) v += x;
}
template <class T>
void SUB(std::vector<T> &a, const T x = 1) {
for(auto &v : a) v -= x;
}
template <class T>
struct cum_vector {
public:
cum_vector() = default;
template <class U>
cum_vector(const std::vector<U> &vec) : cum((int)vec.size() + 1) {
for(int i = 0; i < (int)vec.size(); i++)
cum[i + 1] = cum[i] + vec[i];
}
T prod(int l, int r) {
return cum[r] - cum[l];
}
private:
std::vector<T> cum;
};
std::vector<std::pair<char, int>> rle(const std::string &s) {
const int n = s.size();
std::vector<std::pair<char, int>> ret;
ret.reserve(n);
for(int l = 0; l < n;) {
int r = l + 1;
for(; r < n and s[l] == s[r]; r++) {}
ret.emplace_back(s[l], r - l);
l = r;
}
return ret;
}
template <class T>
std::vector<std::pair<T, int>> rle(const std::vector<T> &v) {
const int n = v.size();
std::vector<std::pair<T, int>> ret;
ret.reserve(n);
for(int l = 0; l < n;) {
int r = l + 1;
for(; r < n and v[l] == v[r]; r++) {}
ret.emplace_back(v[l], r - l);
l = r;
}
return ret;
}
std::vector<int> iota(int n) {
std::vector<int> p(n);
std::iota(p.begin(), p.end(), 0);
return p;
}
#line 12 "/home/nok0/documents/programming/library/template/all"
using namespace std;
#line 4 "a.cpp"
using mint = atcoder::modint998244353;
using fps = formal_power_series<mint, FAST>;
void main_();
int main() {
int t = 1;
while(t--) main_();
}
ll naive(ll n, ll m) {
V<> p;
ll ret = 0;
auto dfs = [&](auto dfs) -> void {
if(SZ(p) == n) {
V<> c = p;
rep(i, n) c[i] -= i;
auto rv = rle(c);
ll sc = 1;
for(auto q : rv) sc *= q.second;
ret += sc;
return;
}
reps(i, m) {
p.pb(i);
dfs(dfs);
p.pop_back();
}
};
dfs(dfs);
return ret;
}
void main_() {
INT(n);
LL(m);
vector f(n + 1, mint(0));
f[1] = 1;
mint s1 = 1, s0 = 1;
rep(i, 2, n + 1) {
f[i] = i;
f[i] += s1 - s0 * i;
s1 += f[i] * i;
s0 += f[i];
}
fps g(n + 1);
reps(i, n) if(m - i + 1 > 0) g[i] = f[i] * (m - i + 1);
fps h(n + 1);
h[0] = 1;
h -= g;
print(h.inv().back());
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0