結果

問題 No.117 組み合わせの数
ユーザー hirayuu_ychirayuu_yc
提出日時 2024-03-12 17:03:36
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 16,511 bytes
コンパイル時間 3,232 ms
コンパイル使用メモリ 256,508 KB
実行使用メモリ 34,560 KB
最終ジャッジ日時 2024-09-29 22:22:23
合計ジャッジ時間 4,237 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "Verify/verify-yuki/yuki-117.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/117"
#line 2 "Template.hpp"
//https://tatyam.hatenablog.com/entry/2019/12/15/003634
#include<bits/stdc++.h>
using namespace std;
using ll=long long;
template<class T> using pq=priority_queue<T,vector<T>,greater<T>>;
using pll=pair<ll,ll>;
const ll LINF=1LL<<60;
#define _overload3(_1,_2,_3,name,...) name
#define _overload4(_1,_2,_3,_4,name,...) name
#define _rep1(i,n) for(ll i=0; i<(n); i++)
#define _rep2(i,a,b) for(ll i=(a); i<(b); i++)
#define _rep3(i,a,b,c) for(ll i=(a); i<(b); i+=(c))
#define rep(...) _overload4(__VA_ARGS__,_rep3,_rep2,_rep1)(__VA_ARGS__)
#define _rrep1(i,n) for(ll i=(n); i-->0;)
#define _rrep2(i,a,b) for(ll i=(b); i-->(a);)
#define rrep(...) _overload3(__VA_ARGS__,_rrep2,_rrep1)(__VA_ARGS__)
#define each(i,...) for(auto&& i:__VA_ARGS__)
#define all(i) begin(i),end(i)
#define rall(i) rbegin(i),rend(i)
template<class T> bool chmin(T &a,const T &b){if(a>b){a=b;return true;}else return false;}
template<class T> bool chmax(T &a,const T &b){if(a<b){a=b;return true;}else return false;}
template<class T> ll sum(const T &a){return accumulate(all(a),0LL);}
template<class T> auto min(const T &a){return *min_element(all(a));}
template<class T> auto max(const T &a){return *max_element(all(a));}
inline int scan(){ return getchar(); }
inline void scan(int &a){ scanf("%d", &a); }
inline void scan(unsigned &a){ scanf("%u", &a); }
inline void scan(long &a){ scanf("%ld", &a); }
inline void scan(long long &a){ scanf("%lld", &a); }
inline void scan(unsigned long long &a){ scanf("%llu", &a); }
inline void scan(char &a){ cin >> a; }
inline void scan(float &a){ scanf("%f", &a); }
inline void scan(double &a){ scanf("%lf", &a); }
inline void scan(long double &a){ scanf("%Lf", &a); }
inline void scan(vector<bool> &vec){ for(unsigned i = 0; i < vec.size(); i++) { int a; scan(a); vec[i] = a; } }
inline void scan(char a[]){ scanf("%s", a); }
inline void scan(string &a){ cin >> a; }
template<class T> inline void scan(vector<T> &vec);
template<class T, size_t size> inline void scan(array<T, size> &vec);
template<class T, class L> inline void scan(pair<T, L> &p);
template<class T, size_t size> inline void scan(T (&vec)[size]);
template<class T> inline void scan(vector<T> &vec){ for(auto &i : vec) scan(i); }
template<class T> inline void scan(deque<T> &vec){ for(auto &i : vec) scan(i); }
template<class T, size_t size> inline void scan(array<T, size> &vec){ for(auto &i : vec) scan(i); }
template<class T, class L> inline void scan(pair<T, L> &p){ scan(p.first); scan(p.second); }
template<class T, size_t size> inline void scan(T (&vec)[size]){ for(auto &i : vec) scan(i); }
template<class T> inline void scan(T &a){ cin >> a; }
inline void in(){}
template <class Head, class... Tail> inline void in(Head &head, Tail&... tail){ scan(head); in(tail...); }
inline void print(){ putchar(' '); }
inline void print(const bool &a){ printf("%d", a); }
inline void print(const int &a){ printf("%d", a); }
inline void print(const unsigned &a){ printf("%u", a); }
inline void print(const long &a){ printf("%ld", a); }
inline void print(const long long &a){ printf("%lld", a); }
inline void print(const unsigned long long &a){ printf("%llu", a); }
inline void print(const char &a){ printf("%c", a); }
inline void print(const char a[]){ printf("%s", a); }
inline void print(const float &a){ printf("%.15f", a); }
inline void print(const double &a){ printf("%.15f", a); }
inline void print(const long double &a){ printf("%.15Lf", a); }
inline void print(const string &a){ for(auto&& i : a) print(i); }
template<class T> inline void print(const vector<T> &vec);
template<class T, size_t size> inline void print(const array<T, size> &vec);
template<class T, class L> inline void print(const pair<T, L> &p);
template<class T, size_t size> inline void print(const T (&vec)[size]);
template<class T> inline void print(const vector<T> &vec){ if(vec.empty()) return; print(vec[0]); for(auto i = vec.begin(); ++i != vec.end(); ){ putchar(' '); print(*i); } }
template<class T> inline void print(const deque<T> &vec){ if(vec.empty()) return; print(vec[0]); for(auto i = vec.begin(); ++i != vec.end(); ){ putchar(' '); print(*i); } }
template<class T, size_t size> inline void print(const array<T, size> &vec){ print(vec[0]); for(auto i = vec.begin(); ++i != vec.end(); ){ putchar(' '); print(*i); } }
template<class T, class L> inline void print(const pair<T, L> &p){ print(p.first); putchar(' '); print(p.second); }
template<class T, size_t size> inline void print(const T (&vec)[size]){ print(vec[0]); for(auto i = vec; ++i != end(vec); ){ putchar(' '); print(*i); } }
template<class T> inline void print(const T &a){ cout << a; }
inline int out(){ putchar('\n'); return 0; }
template<class T> inline int out(const T &t){ print(t); putchar('\n'); return 0; }
template<class Head, class... Tail> inline int out(const Head &head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; }
using ld=long double;
using ull=unsigned long long;
using uint=unsigned int;
using pii=pair<int,int>;
using pdd=pair<ld,ld>;
using tuplis=array<ll,3>;
#define vec(type,name,...) vector<type> name(__VA_ARGS__);
#define vv(type,name,h,...)vector<vector<type>> name(h,vector<type>(__VA_ARGS__));
#define INT(...) int __VA_ARGS__; in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__; in(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__; in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__; in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__; in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__; in(__VA_ARGS__)
#define VEC(type,name,size) vector<type> name(size); in(name)
#define VV(type, name, h, w) vector<vector<type>> name(h, vector<type>(w)); in(name)
template<class T> ld dsum(const T &a){return accumulate(all(a),0.0L);}
const int INF=INT_MAX>>1;
const ll MINF=1LL<<40;
const ld DINF=numeric_limits<ld>::infinity();
const int MODD=1000000007;
const int MOD=998244353;
const ld EPS=1e-9;
const ld PI=3.1415926535897932;
const ll four[]={0,1,0,-1,0};
const ll eight[]={0,1,1,0,-1,-1,1,-1,0};
ll intpow(ll a,ll b){ll ret=1;while(b){if(b&1)ret*=a;a*=a;b>>=1;}return ret;}
int Yes(bool i=true){return out(i?"Yes":"No");}
int No(bool i=true){return out(i?"No":"Yes");}
#define len(x) ((int)(x).size())
#define fi first
#define se second
#line 2 "Math/MontgomeryModint.hpp"
template<uint32_t N>
struct MontgomeryModint{
    static constexpr uint64_t _rev(){
        uint64_t Nd=0;
        uint64_t t=0;
        uint64_t r=1ULL<<32;
        uint64_t i=1;
        while(r){
            if(!(t&1)){
                t+=N;
                Nd+=i;
            }
            t>>=1;
            r>>=1;
            i<<=1;
        }
        return Nd;
    }
    static constexpr uint32_t _phi(){
        uint32_t prime_fact=N;
        uint32_t ret=N;
        for(int i=2; i*i<prime_fact; i++){
            if(prime_fact%i==0){
                ret-=ret/i;
                while(prime_fact%i==0){
                    prime_fact/=i;
                }
            }
        }
        if(prime_fact!=1){
            ret-=ret/prime_fact;
        }
        return ret;
    }
    static constexpr uint64_t R=(1ULL<<32);
    static constexpr uint64_t Nd=_rev();
    static constexpr uint64_t Rr=(Nd*N+1)>>32;
    static constexpr uint64_t MASK=R-1;
    static constexpr uint32_t inv_power=_phi()-1;
    static_assert(1<N);
    static_assert(N<(1<<30));
    static_assert(N&1);
    int64_t x;
    constexpr uint32_t mod(){
        return N;
    }
    constexpr MontgomeryModint()noexcept{
        x=0;
    }
    constexpr MontgomeryModint(int64_t val)noexcept{
        x=(((val%N)+N)%N<<32)%N;
    }
    constexpr uint64_t _reduction(uint64_t val)noexcept{
        uint64_t ret=(val+(((val&MASK)*Nd)&MASK)*N)>>32;
        if(ret>=N)return ret-N;
        return ret;
    }
    constexpr uint64_t val()noexcept{
        return _reduction(x);
    }
    friend ostream &operator<<(ostream &os,MontgomeryModint &b){
        return os<<b.val();
    }
    constexpr MontgomeryModint operator+()noexcept{return *this;}
    constexpr MontgomeryModint operator-()noexcept{return MontgomeryModint()-(*this);}
    constexpr friend MontgomeryModint operator+(MontgomeryModint lhs,MontgomeryModint rhs)noexcept{
        return MontgomeryModint(lhs)+=rhs;
    }
    constexpr friend MontgomeryModint operator-(MontgomeryModint lhs,MontgomeryModint rhs)noexcept{
        return MontgomeryModint(lhs)-=rhs;
    }
    constexpr friend MontgomeryModint operator*(MontgomeryModint lhs,MontgomeryModint rhs)noexcept{
        return MontgomeryModint(lhs)*=rhs;
    }
    constexpr friend MontgomeryModint operator/(MontgomeryModint lhs,MontgomeryModint rhs){
        return MontgomeryModint(lhs)/=rhs;
    }
    constexpr MontgomeryModint operator+=(MontgomeryModint rhs)noexcept{
        x+=rhs.x;
        if(x>=N)x-=N;
        return *this;
    }
    constexpr MontgomeryModint operator-=(MontgomeryModint rhs)noexcept{
        x-=rhs.x;
        if(x<0)x+=N;
        return *this;
    }
    constexpr MontgomeryModint operator*=(MontgomeryModint rhs)noexcept{
        x=_reduction(x*rhs.x);
        return *this;
    }
    constexpr MontgomeryModint operator/=(MontgomeryModint rhs){
        (*this)*=rhs.inv();
        return *this;
    }
    constexpr MontgomeryModint& operator++(){
        (*this)+=1;
        return *this;
    }
    constexpr MontgomeryModint& operator--(){
        (*this)-=1;
        return *this;
    }
    constexpr MontgomeryModint operator++(int){
        (*this)+=1;
        return *this;
    }
    constexpr MontgomeryModint operator--(int){
        (*this)-=1;
        return *this;
    }
    constexpr bool operator==(MontgomeryModint rhs)noexcept{
        return (x>=N?x-N:x)==(rhs.x>=N?rhs.x-N:rhs.x);
    }
    constexpr bool operator!=(MontgomeryModint rhs)noexcept{
        return (x>=N?x-N:x)!=(rhs.x>=N?rhs.x-N:rhs.x);
    }
    constexpr MontgomeryModint inv(){
        MontgomeryModint ret=(*this).pow(inv_power);
        assert(ret*(*this)==1);
        return ret;
    }
    constexpr MontgomeryModint pow(uint64_t x)noexcept{
        MontgomeryModint ret=1;
        MontgomeryModint bin=(*this);
        while(x){
            if(x&1)ret*=bin;
            bin*=bin;
            x>>=1;
        }
        return ret;
    }
};
template<int32_t id>
struct ArbitraryMontgomeryModint{
    static uint64_t _rev(uint32_t N){
        uint64_t Nd=0;
        uint64_t t=0;
        uint64_t r=1ULL<<32;
        uint64_t i=1;
        while(r){
            if(!(t&1)){
                t+=N;
                Nd+=i;
            }
            t>>=1;
            r>>=1;
            i<<=1;
        }
        return Nd;
    }
    static uint32_t _phi(uint32_t N){
        uint32_t prime_fact=N;
        uint32_t ret=N;
        for(int i=2; i*i<prime_fact; i++){
            if(prime_fact%i==0){
                ret-=ret/i;
                while(prime_fact%i==0){
                    prime_fact/=i;
                }
            }
        }
        if(prime_fact!=1){
            ret-=ret/prime_fact;
        }
        return ret;
    }
    static uint64_t N,R,Nd,Rr,MASK;
    static uint32_t inv_power;
    int64_t x;
    static void set_mod(uint32_t mod){
        N=mod;
        R=(1ULL<<32);
        Nd=_rev(N);
        Rr=(Nd*N+1)>>32;
        MASK=R-1;
        inv_power=_phi(N)-1;
        assert(1<mod);
        assert(mod<(1<<30));
        assert(mod&1);
    }
    uint32_t mod(){
        return N;
    }
    ArbitraryMontgomeryModint()noexcept{
        x=0;
    }
    ArbitraryMontgomeryModint(int64_t val)noexcept{
        x=(((val%N)+N)%N<<32)%N;
    }
    uint64_t _reduction(uint64_t val)noexcept{
        uint64_t ret=(val+(((val&MASK)*Nd)&MASK)*N)>>32;
        if(ret>=N)return ret-N;
        return ret;
    }
    uint64_t val()noexcept{
        return _reduction(x);
    }
    friend ostream &operator<<(ostream &os,ArbitraryMontgomeryModint &b){
        return os<<b.val();
    }
    ArbitraryMontgomeryModint operator+()noexcept{return *this;}
    ArbitraryMontgomeryModint operator-()noexcept{return ArbitraryMontgomeryModint()-(*this);}
    friend ArbitraryMontgomeryModint operator+(ArbitraryMontgomeryModint lhs,ArbitraryMontgomeryModint rhs)noexcept{
        return ArbitraryMontgomeryModint(lhs)+=rhs;
    }
    friend ArbitraryMontgomeryModint operator-(ArbitraryMontgomeryModint lhs,ArbitraryMontgomeryModint rhs)noexcept{
        return ArbitraryMontgomeryModint(lhs)-=rhs;
    }
    friend ArbitraryMontgomeryModint operator*(ArbitraryMontgomeryModint lhs,ArbitraryMontgomeryModint rhs)noexcept{
        return ArbitraryMontgomeryModint(lhs)*=rhs;
    }
    friend ArbitraryMontgomeryModint operator/(ArbitraryMontgomeryModint lhs,ArbitraryMontgomeryModint rhs){
        return ArbitraryMontgomeryModint(lhs)/=rhs;
    }
    ArbitraryMontgomeryModint operator+=(ArbitraryMontgomeryModint rhs)noexcept{
        x+=rhs.x;
        if(x>=N)x-=N;
        return *this;
    }
    ArbitraryMontgomeryModint operator-=(ArbitraryMontgomeryModint rhs)noexcept{
        x-=rhs.x;
        if(x<0)x+=N;
        return *this;
    }
    ArbitraryMontgomeryModint operator*=(ArbitraryMontgomeryModint rhs)noexcept{
        x=_reduction(x*rhs.x);
        return *this;
    }
    ArbitraryMontgomeryModint operator/=(ArbitraryMontgomeryModint rhs){
        (*this)*=rhs.inv();
        return *this;
    }
    ArbitraryMontgomeryModint& operator++(){
        (*this)+=1;
        return *this;
    }
    ArbitraryMontgomeryModint& operator--(){
        (*this)-=1;
        return *this;
    }
    ArbitraryMontgomeryModint operator++(int){
        (*this)+=1;
        return *this;
    }
    ArbitraryMontgomeryModint operator--(int){
        (*this)-=1;
        return *this;
    }
    bool operator==(ArbitraryMontgomeryModint rhs)noexcept{
        return (x>=N?x-N:x)==(rhs.x>=N?rhs.x-N:rhs.x);
    }
    bool operator!=(ArbitraryMontgomeryModint rhs)noexcept{
        return (x>=N?x-N:x)!=(rhs.x>=N?rhs.x-N:rhs.x);
    }
    ArbitraryMontgomeryModint inv(){
        ArbitraryMontgomeryModint ret=(*this).pow(inv_power);
        assert(ret*(*this)==1);
        return ret;
    }
    ArbitraryMontgomeryModint pow(uint64_t x)noexcept{
        ArbitraryMontgomeryModint ret=1;
        ArbitraryMontgomeryModint bin=(*this);
        while(x){
            if(x&1)ret*=bin;
            bin*=bin;
            x>>=1;
        }
        return ret;
    }
};
template<int id>uint64_t ArbitraryMontgomeryModint<id>::N;
template<int id>uint64_t ArbitraryMontgomeryModint<id>::R;
template<int id>uint64_t ArbitraryMontgomeryModint<id>::Nd;
template<int id>uint64_t ArbitraryMontgomeryModint<id>::Rr;
template<int id>uint64_t ArbitraryMontgomeryModint<id>::MASK;
template<int id>uint32_t ArbitraryMontgomeryModint<id>::inv_power;

template<uint32_t N> inline void print(MontgomeryModint<N> a){ cout << a; }
template<int32_t id> inline void print(ArbitraryMontgomeryModint<id> a){ cout << a; }
#line 2 "Math/BinomialCoefficient_Primemod.hpp"
template<typename T>
struct BinomialCoefficient_Primemod{
    vector<T> fact={1},rev{1};
    void resize(uint32_t sz){
        sz++;
        if(fact.size()>=sz)return;
        uint32_t before=fact.size();
        fact.resize(sz);
        rev.resize(sz);
        for(uint32_t i=before; i<sz; i++){
            fact[i]=fact[i-1]*i;
            rev[i]=rev[i-1]/i;
        }
    }
    T comb(int32_t n,int32_t k){
        if(n<0||k<0||n<k)return 0;
        resize(n);
        return fact[n]*rev[n-k]*rev[k];
    }
    T perm(int32_t n,int32_t k){
        if(n<0||k<0||n<k)return 0;
        resize(n);
        return fact[n]*rev[n-k];
    }
    T multi_comb(int32_t n,int32_t k){
        return comb(n+k-1,k);
    }
};
#line 5 "Verify/verify-yuki/yuki-117.test.cpp"
using mint=MontgomeryModint<MODD>;
void solve(){
    LL(T);
    BinomialCoefficient_Primemod<mint> comb;
    comb.resize(1000000);
    rep(i,T){
        STR(S);
        ll N=0,K=0;
        bool flg=false;
        each(j,S){
            if(0<=j-'0'&&j-'0'<=9){
                if(flg){
                    K*=10;
                    K+=j-'0';
                }
                else{
                    N*=10;
                    N+=j-'0';
                }
            }
            else if(j==','){
                flg=true;
            }
        }
        if(S[0]=='C')out(comb.comb(N,K));
        else if(S[0]=='P')out(comb.perm(N,K));
        else if(S[0]=='H')out(comb.multi_comb(N,K));
    }
}
int main(){
    solve();
    return 0;
}
0