結果

問題 No.2677 Minmax Independent Set
ユーザー 👑 tute7627tute7627
提出日時 2024-03-15 21:47:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 19,214 bytes
コンパイル時間 3,435 ms
コンパイル使用メモリ 241,524 KB
実行使用メモリ 74,660 KB
最終ジャッジ日時 2024-09-30 00:45:56
合計ジャッジ時間 16,931 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 WA -
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 414 ms
70,516 KB
testcase_06 AC 407 ms
70,328 KB
testcase_07 AC 453 ms
70,928 KB
testcase_08 AC 418 ms
70,560 KB
testcase_09 AC 448 ms
70,800 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 AC 281 ms
68,500 KB
testcase_13 AC 392 ms
68,228 KB
testcase_14 AC 321 ms
68,348 KB
testcase_15 AC 460 ms
70,348 KB
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 AC 241 ms
66,540 KB
testcase_29 AC 508 ms
74,660 KB
testcase_30 AC 2 ms
6,816 KB
testcase_31 AC 2 ms
6,816 KB
testcase_32 AC 2 ms
6,820 KB
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 WA -
testcase_46 WA -
testcase_47 WA -
testcase_48 WA -
testcase_49 WA -
testcase_50 AC 66 ms
27,096 KB
testcase_51 AC 6 ms
6,816 KB
testcase_52 AC 147 ms
55,712 KB
testcase_53 AC 135 ms
52,060 KB
testcase_54 AC 6 ms
6,816 KB
testcase_55 WA -
testcase_56 WA -
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
testcase_60 AC 200 ms
70,688 KB
testcase_61 WA -
testcase_62 AC 206 ms
69,712 KB
testcase_63 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
  return ord;
}
template<typename T> vector<T> inv_perm(const vector<T>&ord){
  vector<T>inv(ord.size());
  for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
  return inv;
}
ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
ll modulo(ll n,ll d){return (n%d+d)%d;};
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
#line 2 "graph/bipartite_matching.hpp"
#include <cassert>
#include <iostream>
#include <vector>

// Bipartite matching of undirected bipartite graph (Hopcroft-Karp)
// https://ei1333.github.io/luzhiled/snippets/graph/hopcroft-karp.html
// Comprexity: O((V + E)sqrtV)
// int solve(): enumerate maximum number of matching / return -1 (if graph is not bipartite)
struct BipartiteMatching {
    int V;
    std::vector<std::vector<int>> to; // Adjacency list
    std::vector<int> dist;            // dist[i] = (Distance from i'th node)
    std::vector<int> match;           // match[i] = (Partner of i'th node) or -1 (No parter)
    std::vector<int> used, vv;
    std::vector<int> color; // color of each node(checking bipartition): 0/1/-1(not determined)

    BipartiteMatching() = default;
    BipartiteMatching(int V_) : V(V_), to(V_), match(V_, -1), used(V_), color(V_, -1) {}

    void add_edge(int u, int v) {
        assert(u >= 0 and u < V and v >= 0 and v < V and u != v);
        to[u].push_back(v);
        to[v].push_back(u);
    }

    void _bfs() {
        dist.assign(V, -1);
        std::vector<int> q;
        int lq = 0;
        for (int i = 0; i < V; i++) {
            if (!color[i] and !used[i]) q.push_back(i), dist[i] = 0;
        }

        while (lq < int(q.size())) {
            int now = q[lq++];
            for (auto nxt : to[now]) {
                int c = match[nxt];
                if (c >= 0 and dist[c] == -1) q.push_back(c), dist[c] = dist[now] + 1;
            }
        }
    }

    bool _dfs(int now) {
        vv[now] = true;
        for (auto nxt : to[now]) {
            int c = match[nxt];
            if (c < 0 or (!vv[c] and dist[c] == dist[now] + 1 and _dfs(c))) {
                match[nxt] = now, match[now] = nxt;
                used[now] = true;
                return true;
            }
        }
        return false;
    }

    bool _color_bfs(int root) {
        color[root] = 0;
        std::vector<int> q{root};
        int lq = 0;
        while (lq < int(q.size())) {
            int now = q[lq++], c = color[now];
            for (auto nxt : to[now]) {
                if (color[nxt] == -1) {
                    color[nxt] = !c, q.push_back(nxt);
                } else if (color[nxt] == c) {
                    return false;
                }
            }
        }
        return true;
    }

    int solve() {
        for (int i = 0; i < V; i++) {
            if (color[i] == -1 and !_color_bfs(i)) return -1;
        }
        int ret = 0;
        while (true) {
            _bfs();
            vv.assign(V, false);
            int flow = 0;
            for (int i = 0; i < V; i++) {
                if (!color[i] and !used[i] and _dfs(i)) flow++;
            }
            if (!flow) break;
            ret += flow;
        }
        return ret;
    }

    template <class OStream> friend OStream &operator<<(OStream &os, const BipartiteMatching &bm) {
        os << "{N=" << bm.V << ':';
        for (int i = 0; i < bm.V; i++) {
            if (bm.match[i] > i) os << '(' << i << '-' << bm.match[i] << "),";
        }
        return os << '}';
    }
};
#line 2 "graph/strongly_connected_components.hpp"
#include <algorithm>
#line 5 "graph/strongly_connected_components.hpp"

// CUT begin
// Directed graph library to find strongly connected components (強連結成分分解)
// 0-indexed directed graph
// Complexity: O(V + E)
struct DirectedGraphSCC {
    int V; // # of Vertices
    std::vector<std::vector<int>> to, from;
    std::vector<int> used; // Only true/false
    std::vector<int> vs;
    std::vector<int> cmp;
    int scc_num = -1;

    DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}

    void _dfs(int v) {
        used[v] = true;
        for (auto t : to[v])
            if (!used[t]) _dfs(t);
        vs.push_back(v);
    }
    void _rdfs(int v, int k) {
        used[v] = true;
        cmp[v] = k;
        for (auto t : from[v])
            if (!used[t]) _rdfs(t, k);
    }

    void add_edge(int from_, int to_) {
        assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);
        to[from_].push_back(to_);
        from[to_].push_back(from_);
    }

    // Detect strongly connected components and return # of them.
    // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)
    int FindStronglyConnectedComponents() {
        used.assign(V, false);
        vs.clear();
        for (int v = 0; v < V; v++)
            if (!used[v]) _dfs(v);
        used.assign(V, false);
        scc_num = 0;
        for (int i = (int)vs.size() - 1; i >= 0; i--)
            if (!used[vs[i]]) _rdfs(vs[i], scc_num++);
        return scc_num;
    }

    // Find and output the vertices that form a closed cycle.
    // output: {v_1, ..., v_C}, where C is the length of cycle,
    //         {} if there's NO cycle (graph is DAG)
    int _c, _init;
    std::vector<int> _ret_cycle;
    bool _dfs_detectcycle(int now, bool b0) {
        if (now == _init and b0) return true;
        for (auto nxt : to[now])
            if (cmp[nxt] == _c and !used[nxt]) {
                _ret_cycle.emplace_back(nxt), used[nxt] = 1;
                if (_dfs_detectcycle(nxt, true)) return true;
                _ret_cycle.pop_back();
            }
        return false;
    }
    std::vector<int> DetectCycle() {
        int ns = FindStronglyConnectedComponents();
        if (ns == V) return {};
        std::vector<int> cnt(ns);
        for (auto x : cmp) cnt[x]++;
        _c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();
        _init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();
        used.assign(V, false);
        _ret_cycle.clear();
        _dfs_detectcycle(_init, false);
        return _ret_cycle;
    }

    // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all
    // vertices belonging to the same component(The resultant graph is DAG).
    DirectedGraphSCC GenerateTopologicalGraph() {
        DirectedGraphSCC newgraph(scc_num);
        for (int s = 0; s < V; s++)
            for (auto t : to[s]) {
                if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);
            }
        return newgraph;
    }
};

// 2-SAT solver: Find a solution for  `(Ai v Aj) ^ (Ak v Al) ^ ... = true`
// - `nb_sat_vars`: Number of variables
// - Considering a graph with `2 * nb_sat_vars` vertices
// - Vertices [0, nb_sat_vars) means `Ai`
// - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai`
struct SATSolver : DirectedGraphSCC {
    int nb_sat_vars;
    std::vector<int> solution;
    SATSolver(int nb_variables = 0)
        : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {}
    void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) {
        assert(x >= 0 and x < nb_sat_vars);
        assert(y >= 0 and y < nb_sat_vars);
        if (!is_x_true) x += nb_sat_vars;
        if (!is_y_true) y += nb_sat_vars;
        add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y);
        add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x);
    }
    // Solve the 2-SAT problem. If no solution exists, return `false`.
    // Otherwise, dump one solution to `solution` and return `true`.
    bool run() {
        FindStronglyConnectedComponents();
        for (int i = 0; i < nb_sat_vars; i++) {
            if (cmp[i] == cmp[i + nb_sat_vars]) return false;
            solution[i] = cmp[i] > cmp[i + nb_sat_vars];
        }
        return true;
    }
};
#line 5 "graph/dulmage_mendelsohn_decomposition.hpp"
#include <utility>
#line 7 "graph/dulmage_mendelsohn_decomposition.hpp"

// Dulmage–Mendelsohn (DM) decomposition (DM 分解)
// return: [(W+0, W-0), (W+1,W-1),...,(W+(k+1), W-(k+1))]
//         : sequence of pair (left vetrices, right vertices)
//         - |W+0| < |W-0| or both empty
//         - |W+i| = |W-i| (i = 1, ..., k)
//         - |W+(k+1)| > |W-(k+1)| or both empty
//         - W is topologically sorted
// Example:
// (2, 2, [(0,0), (0,1), (1,0)]) => [([],[]),([0,],[1,]),([1,],[0,]),([],[]),]
// Complexity: O(N + (N + M) sqrt(N))
// Verified: https://yukicoder.me/problems/no/1615
std::vector<std::pair<std::vector<int>, std::vector<int>>>
dulmage_mendelsohn(int L, int R, const std::vector<std::pair<int, int>> &edges) {
    for (auto p : edges) {
        assert(0 <= p.first and p.first < L);
        assert(0 <= p.second and p.second < R);
    }

    BipartiteMatching bm(L + R);
    for (auto p : edges) bm.add_edge(p.first, L + p.second);
    bm.solve();

    DirectedGraphSCC scc(L + R);
    for (auto p : edges) scc.add_edge(p.first, L + p.second);
    for (int l = 0; l < L; ++l) {
        if (bm.match[l] >= L) scc.add_edge(bm.match[l], l);
    }

    int nscc = scc.FindStronglyConnectedComponents();
    std::vector<int> cmp_map(nscc, -2);

    std::vector<int> vis(L + R);
    std::vector<int> st;
    for (int c = 0; c < 2; ++c) {
        std::vector<std::vector<int>> to(L + R);
        auto color = [&L](int x) { return x >= L; };
        for (auto p : edges) {
            int u = p.first, v = L + p.second;
            if (color(u) != c) std::swap(u, v);
            to[u].push_back(v);
            if (bm.match[u] == v) to[v].push_back(u);
        }
        for (int i = 0; i < L + R; ++i) {
            if (bm.match[i] >= 0 or color(i) != c or vis[i]) continue;
            vis[i] = 1, st = {i};
            while (!st.empty()) {
                int now = st.back();
                cmp_map[scc.cmp[now]] = c - 1;
                st.pop_back();
                for (int nxt : to[now]) {
                    if (!vis[nxt]) vis[nxt] = 1, st.push_back(nxt);
                }
            }
        }
    }

    int nset = 1;
    for (int n = 0; n < nscc; ++n) {
        if (cmp_map[n] == -2) cmp_map[n] = nset++;
    }
    for (auto &x : cmp_map) {
        if (x == -1) x = nset;
    }
    nset++;

    std::vector<std::pair<std::vector<int>, std::vector<int>>> groups(nset);

    for (int l = 0; l < L; ++l) {
        if (bm.match[l] < 0) continue;
        int c = cmp_map[scc.cmp[l]];
        groups[c].first.push_back(l);
        groups[c].second.push_back(bm.match[l] - L);
    }
    for (int l = 0; l < L; ++l) {
        if (bm.match[l] >= 0) continue;
        int c = cmp_map[scc.cmp[l]];
        groups[c].first.push_back(l);
    }
    for (int r = 0; r < R; ++r) {
        if (bm.match[L + r] >= 0) continue;
        int c = cmp_map[scc.cmp[L + r]];
        groups[c].second.push_back(r);
    }

    return groups;
}
template<typename T>
vector<int>nibu_graph(const Graph<T>&g){
  int n=g.size();
  vector<int>t(n,-1);
  queue<int>que;
  for(ll i=0;i<n;i++){
    if(t[i]!=-1)continue;
    que.push(i);
    t[i]=0;
    while(!que.empty()){
      auto p=que.front();que.pop();
      for(auto e:g[p]){
        if(t[e.to]==-1){
          que.push(e.to);
          t[e.to]=t[p]^e.cost;
        }
        else if(t[p]!=t[e.to]^e.cost)return vector<int>();
      }
    }
  }
  return t;
}
template<typename T>
vector<pair<bool,vector<vector<int>>>>nibu_graph_con(const Graph<T>&g){
  int n=g.size();
  vector<pair<bool,vector<vector<int>>>>v;
  vector<int>t(n,-1);
  queue<int>que;
  for(ll i=0;i<n;i++){
    if(t[i]!=-1)continue;
    que.emplace(i);
    v.emplace_back(true,vector<vector<int>>(2));
    t[i]=0;
    while(!que.empty()){
      auto p=que.front();que.pop();
      v.back().second[t[p]].push_back(p);
      for(auto e:g[p]){
        if(t[e.to]==-1){
          que.push(e.to);
          t[e.to]=t[p]^e.cost;
        }
        else if(t[p]!=t[e.to]^e.cost)v.back().first=false;
      }
    }
  }
  return v;
}
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  ll n;cin>>n;
  auto g=readGraph<int>(n,n-1);
  auto t=nibu_graph(g);
  int L=0,R=0;
  vector<int>idx(n);
  vector<pair<int,int>>edges;
  rep(i,0,n){
    if(t[i]==0)idx[i]=L++;
    else idx[i]=R++;
  }
  rep(i,0,n){
    for(auto to:g[i]){
      if(t[i]==0){
        edges.EB(idx[i],idx[to]);
      }
    }
  }
  auto dm=dulmage_mendelsohn(L,R,edges);
  ll ret=n;
  for(auto z:dm)ret-=min(z.fi.size(),z.se.size());
  ll mx=0;
  for(auto z:dm)chmax(mx,abs((ll)z.fi.size()-(ll)z.se.size()));
  cout<<ret-mx<<endl;
  return 0;
}
0