結果
問題 | No.2677 Minmax Independent Set |
ユーザー | 👑 tute7627 |
提出日時 | 2024-03-15 21:47:54 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 19,214 bytes |
コンパイル時間 | 3,435 ms |
コンパイル使用メモリ | 241,524 KB |
実行使用メモリ | 74,660 KB |
最終ジャッジ日時 | 2024-09-30 00:45:56 |
合計ジャッジ時間 | 16,931 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | WA | - |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 414 ms
70,516 KB |
testcase_06 | AC | 407 ms
70,328 KB |
testcase_07 | AC | 453 ms
70,928 KB |
testcase_08 | AC | 418 ms
70,560 KB |
testcase_09 | AC | 448 ms
70,800 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 281 ms
68,500 KB |
testcase_13 | AC | 392 ms
68,228 KB |
testcase_14 | AC | 321 ms
68,348 KB |
testcase_15 | AC | 460 ms
70,348 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 241 ms
66,540 KB |
testcase_29 | AC | 508 ms
74,660 KB |
testcase_30 | AC | 2 ms
6,816 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,820 KB |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | WA | - |
testcase_46 | WA | - |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | AC | 66 ms
27,096 KB |
testcase_51 | AC | 6 ms
6,816 KB |
testcase_52 | AC | 147 ms
55,712 KB |
testcase_53 | AC | 135 ms
52,060 KB |
testcase_54 | AC | 6 ms
6,816 KB |
testcase_55 | WA | - |
testcase_56 | WA | - |
testcase_57 | WA | - |
testcase_58 | WA | - |
testcase_59 | WA | - |
testcase_60 | AC | 200 ms
70,688 KB |
testcase_61 | WA | - |
testcase_62 | AC | 206 ms
69,712 KB |
testcase_63 | WA | - |
ソースコード
//#define _GLIBCXX_DEBUG #include<bits/stdc++.h> using namespace std; #define endl '\n' #define lfs cout<<fixed<<setprecision(10) #define ALL(a) (a).begin(),(a).end() #define ALLR(a) (a).rbegin(),(a).rend() #define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end()) #define spa << " " << #define fi first #define se second #define MP make_pair #define MT make_tuple #define PB push_back #define EB emplace_back #define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++) #define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--) using ll = long long; using ld = long double; const ll MOD1 = 1e9+7; const ll MOD9 = 998244353; const ll INF = 1e18; using P = pair<ll, ll>; template<typename T> using PQ = priority_queue<T>; template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>; template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;} template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;} ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});} void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;} void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;} void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;} template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;} template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);}; template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}}; template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;}; template<typename T>void debug(const vector<T>&v){debug(v,v.size());} template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());} template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;} template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;} template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;} template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;} template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;} template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;} template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;} ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;} vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1}; template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);} template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));} template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;} template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;} template<typename T>void rearrange(vector<int>&ord, vector<T>&v){ auto tmp = v; for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]]; } template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){ rearrange(ord, head); rearrange(ord, tail...); } template<typename T> vector<int> ascend(const vector<T>&v){ vector<int>ord(v.size());iota(ord.begin(),ord.end(),0); sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);}); return ord; } template<typename T> vector<int> descend(const vector<T>&v){ vector<int>ord(v.size());iota(ord.begin(),ord.end(),0); sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);}); return ord; } template<typename T> vector<T> inv_perm(const vector<T>&ord){ vector<T>inv(ord.size()); for(int i=0;i<ord.size();i++)inv[ord[i]] = i; return inv; } ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;} ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;} ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;} ll modulo(ll n,ll d){return (n%d+d)%d;}; template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());} template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());} template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));}; template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());}; //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count()); int popcount(ll x){return __builtin_popcountll(x);}; int poplow(ll x){return __builtin_ctzll(x);}; int pophigh(ll x){return 63 - __builtin_clzll(x);}; template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;}; template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;}; template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;}; template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;}; ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;} ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;} ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;} template< typename T = int > struct edge { int to; T cost; int id; edge():id(-1){}; edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){} operator int() const { return to; } }; template<typename T> using Graph = vector<vector<edge<T>>>; template<typename T> Graph<T>revgraph(const Graph<T> &g){ Graph<T>ret(g.size()); for(int i=0;i<g.size();i++){ for(auto e:g[i]){ int to = e.to; e.to = i; ret[to].push_back(e); } } return ret; } template<typename T> Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){ Graph<T> ret(n); for(int es = 0; es < m; es++){ int u,v; T w=1; cin>>u>>v;u-=indexed,v-=indexed; if(weighted)cin>>w; ret[u].emplace_back(v,w,es); if(!directed)ret[v].emplace_back(u,w,es); } return ret; } template<typename T> Graph<T> readParent(int n,int indexed=1,bool directed=true){ Graph<T>ret(n); for(int i=1;i<n;i++){ int p;cin>>p; p-=indexed; ret[p].emplace_back(i); if(!directed)ret[i].emplace_back(p); } return ret; } #line 2 "graph/bipartite_matching.hpp" #include <cassert> #include <iostream> #include <vector> // Bipartite matching of undirected bipartite graph (Hopcroft-Karp) // https://ei1333.github.io/luzhiled/snippets/graph/hopcroft-karp.html // Comprexity: O((V + E)sqrtV) // int solve(): enumerate maximum number of matching / return -1 (if graph is not bipartite) struct BipartiteMatching { int V; std::vector<std::vector<int>> to; // Adjacency list std::vector<int> dist; // dist[i] = (Distance from i'th node) std::vector<int> match; // match[i] = (Partner of i'th node) or -1 (No parter) std::vector<int> used, vv; std::vector<int> color; // color of each node(checking bipartition): 0/1/-1(not determined) BipartiteMatching() = default; BipartiteMatching(int V_) : V(V_), to(V_), match(V_, -1), used(V_), color(V_, -1) {} void add_edge(int u, int v) { assert(u >= 0 and u < V and v >= 0 and v < V and u != v); to[u].push_back(v); to[v].push_back(u); } void _bfs() { dist.assign(V, -1); std::vector<int> q; int lq = 0; for (int i = 0; i < V; i++) { if (!color[i] and !used[i]) q.push_back(i), dist[i] = 0; } while (lq < int(q.size())) { int now = q[lq++]; for (auto nxt : to[now]) { int c = match[nxt]; if (c >= 0 and dist[c] == -1) q.push_back(c), dist[c] = dist[now] + 1; } } } bool _dfs(int now) { vv[now] = true; for (auto nxt : to[now]) { int c = match[nxt]; if (c < 0 or (!vv[c] and dist[c] == dist[now] + 1 and _dfs(c))) { match[nxt] = now, match[now] = nxt; used[now] = true; return true; } } return false; } bool _color_bfs(int root) { color[root] = 0; std::vector<int> q{root}; int lq = 0; while (lq < int(q.size())) { int now = q[lq++], c = color[now]; for (auto nxt : to[now]) { if (color[nxt] == -1) { color[nxt] = !c, q.push_back(nxt); } else if (color[nxt] == c) { return false; } } } return true; } int solve() { for (int i = 0; i < V; i++) { if (color[i] == -1 and !_color_bfs(i)) return -1; } int ret = 0; while (true) { _bfs(); vv.assign(V, false); int flow = 0; for (int i = 0; i < V; i++) { if (!color[i] and !used[i] and _dfs(i)) flow++; } if (!flow) break; ret += flow; } return ret; } template <class OStream> friend OStream &operator<<(OStream &os, const BipartiteMatching &bm) { os << "{N=" << bm.V << ':'; for (int i = 0; i < bm.V; i++) { if (bm.match[i] > i) os << '(' << i << '-' << bm.match[i] << "),"; } return os << '}'; } }; #line 2 "graph/strongly_connected_components.hpp" #include <algorithm> #line 5 "graph/strongly_connected_components.hpp" // CUT begin // Directed graph library to find strongly connected components (強連結成分分解) // 0-indexed directed graph // Complexity: O(V + E) struct DirectedGraphSCC { int V; // # of Vertices std::vector<std::vector<int>> to, from; std::vector<int> used; // Only true/false std::vector<int> vs; std::vector<int> cmp; int scc_num = -1; DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {} void _dfs(int v) { used[v] = true; for (auto t : to[v]) if (!used[t]) _dfs(t); vs.push_back(v); } void _rdfs(int v, int k) { used[v] = true; cmp[v] = k; for (auto t : from[v]) if (!used[t]) _rdfs(t, k); } void add_edge(int from_, int to_) { assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V); to[from_].push_back(to_); from[to_].push_back(from_); } // Detect strongly connected components and return # of them. // Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed) int FindStronglyConnectedComponents() { used.assign(V, false); vs.clear(); for (int v = 0; v < V; v++) if (!used[v]) _dfs(v); used.assign(V, false); scc_num = 0; for (int i = (int)vs.size() - 1; i >= 0; i--) if (!used[vs[i]]) _rdfs(vs[i], scc_num++); return scc_num; } // Find and output the vertices that form a closed cycle. // output: {v_1, ..., v_C}, where C is the length of cycle, // {} if there's NO cycle (graph is DAG) int _c, _init; std::vector<int> _ret_cycle; bool _dfs_detectcycle(int now, bool b0) { if (now == _init and b0) return true; for (auto nxt : to[now]) if (cmp[nxt] == _c and !used[nxt]) { _ret_cycle.emplace_back(nxt), used[nxt] = 1; if (_dfs_detectcycle(nxt, true)) return true; _ret_cycle.pop_back(); } return false; } std::vector<int> DetectCycle() { int ns = FindStronglyConnectedComponents(); if (ns == V) return {}; std::vector<int> cnt(ns); for (auto x : cmp) cnt[x]++; _c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin(); _init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin(); used.assign(V, false); _ret_cycle.clear(); _dfs_detectcycle(_init, false); return _ret_cycle; } // After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all // vertices belonging to the same component(The resultant graph is DAG). DirectedGraphSCC GenerateTopologicalGraph() { DirectedGraphSCC newgraph(scc_num); for (int s = 0; s < V; s++) for (auto t : to[s]) { if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]); } return newgraph; } }; // 2-SAT solver: Find a solution for `(Ai v Aj) ^ (Ak v Al) ^ ... = true` // - `nb_sat_vars`: Number of variables // - Considering a graph with `2 * nb_sat_vars` vertices // - Vertices [0, nb_sat_vars) means `Ai` // - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai` struct SATSolver : DirectedGraphSCC { int nb_sat_vars; std::vector<int> solution; SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {} void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) { assert(x >= 0 and x < nb_sat_vars); assert(y >= 0 and y < nb_sat_vars); if (!is_x_true) x += nb_sat_vars; if (!is_y_true) y += nb_sat_vars; add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y); add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x); } // Solve the 2-SAT problem. If no solution exists, return `false`. // Otherwise, dump one solution to `solution` and return `true`. bool run() { FindStronglyConnectedComponents(); for (int i = 0; i < nb_sat_vars; i++) { if (cmp[i] == cmp[i + nb_sat_vars]) return false; solution[i] = cmp[i] > cmp[i + nb_sat_vars]; } return true; } }; #line 5 "graph/dulmage_mendelsohn_decomposition.hpp" #include <utility> #line 7 "graph/dulmage_mendelsohn_decomposition.hpp" // Dulmage–Mendelsohn (DM) decomposition (DM 分解) // return: [(W+0, W-0), (W+1,W-1),...,(W+(k+1), W-(k+1))] // : sequence of pair (left vetrices, right vertices) // - |W+0| < |W-0| or both empty // - |W+i| = |W-i| (i = 1, ..., k) // - |W+(k+1)| > |W-(k+1)| or both empty // - W is topologically sorted // Example: // (2, 2, [(0,0), (0,1), (1,0)]) => [([],[]),([0,],[1,]),([1,],[0,]),([],[]),] // Complexity: O(N + (N + M) sqrt(N)) // Verified: https://yukicoder.me/problems/no/1615 std::vector<std::pair<std::vector<int>, std::vector<int>>> dulmage_mendelsohn(int L, int R, const std::vector<std::pair<int, int>> &edges) { for (auto p : edges) { assert(0 <= p.first and p.first < L); assert(0 <= p.second and p.second < R); } BipartiteMatching bm(L + R); for (auto p : edges) bm.add_edge(p.first, L + p.second); bm.solve(); DirectedGraphSCC scc(L + R); for (auto p : edges) scc.add_edge(p.first, L + p.second); for (int l = 0; l < L; ++l) { if (bm.match[l] >= L) scc.add_edge(bm.match[l], l); } int nscc = scc.FindStronglyConnectedComponents(); std::vector<int> cmp_map(nscc, -2); std::vector<int> vis(L + R); std::vector<int> st; for (int c = 0; c < 2; ++c) { std::vector<std::vector<int>> to(L + R); auto color = [&L](int x) { return x >= L; }; for (auto p : edges) { int u = p.first, v = L + p.second; if (color(u) != c) std::swap(u, v); to[u].push_back(v); if (bm.match[u] == v) to[v].push_back(u); } for (int i = 0; i < L + R; ++i) { if (bm.match[i] >= 0 or color(i) != c or vis[i]) continue; vis[i] = 1, st = {i}; while (!st.empty()) { int now = st.back(); cmp_map[scc.cmp[now]] = c - 1; st.pop_back(); for (int nxt : to[now]) { if (!vis[nxt]) vis[nxt] = 1, st.push_back(nxt); } } } } int nset = 1; for (int n = 0; n < nscc; ++n) { if (cmp_map[n] == -2) cmp_map[n] = nset++; } for (auto &x : cmp_map) { if (x == -1) x = nset; } nset++; std::vector<std::pair<std::vector<int>, std::vector<int>>> groups(nset); for (int l = 0; l < L; ++l) { if (bm.match[l] < 0) continue; int c = cmp_map[scc.cmp[l]]; groups[c].first.push_back(l); groups[c].second.push_back(bm.match[l] - L); } for (int l = 0; l < L; ++l) { if (bm.match[l] >= 0) continue; int c = cmp_map[scc.cmp[l]]; groups[c].first.push_back(l); } for (int r = 0; r < R; ++r) { if (bm.match[L + r] >= 0) continue; int c = cmp_map[scc.cmp[L + r]]; groups[c].second.push_back(r); } return groups; } template<typename T> vector<int>nibu_graph(const Graph<T>&g){ int n=g.size(); vector<int>t(n,-1); queue<int>que; for(ll i=0;i<n;i++){ if(t[i]!=-1)continue; que.push(i); t[i]=0; while(!que.empty()){ auto p=que.front();que.pop(); for(auto e:g[p]){ if(t[e.to]==-1){ que.push(e.to); t[e.to]=t[p]^e.cost; } else if(t[p]!=t[e.to]^e.cost)return vector<int>(); } } } return t; } template<typename T> vector<pair<bool,vector<vector<int>>>>nibu_graph_con(const Graph<T>&g){ int n=g.size(); vector<pair<bool,vector<vector<int>>>>v; vector<int>t(n,-1); queue<int>que; for(ll i=0;i<n;i++){ if(t[i]!=-1)continue; que.emplace(i); v.emplace_back(true,vector<vector<int>>(2)); t[i]=0; while(!que.empty()){ auto p=que.front();que.pop(); v.back().second[t[p]].push_back(p); for(auto e:g[p]){ if(t[e.to]==-1){ que.push(e.to); t[e.to]=t[p]^e.cost; } else if(t[p]!=t[e.to]^e.cost)v.back().first=false; } } } return v; } int main(){ cin.tie(nullptr); ios_base::sync_with_stdio(false); ll res=0,buf=0; bool judge = true; ll n;cin>>n; auto g=readGraph<int>(n,n-1); auto t=nibu_graph(g); int L=0,R=0; vector<int>idx(n); vector<pair<int,int>>edges; rep(i,0,n){ if(t[i]==0)idx[i]=L++; else idx[i]=R++; } rep(i,0,n){ for(auto to:g[i]){ if(t[i]==0){ edges.EB(idx[i],idx[to]); } } } auto dm=dulmage_mendelsohn(L,R,edges); ll ret=n; for(auto z:dm)ret-=min(z.fi.size(),z.se.size()); ll mx=0; for(auto z:dm)chmax(mx,abs((ll)z.fi.size()-(ll)z.se.size())); cout<<ret-mx<<endl; return 0; }