結果
問題 |
No.2677 Minmax Independent Set
|
ユーザー |
![]() |
提出日時 | 2024-03-15 23:32:57 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,379 bytes |
コンパイル時間 | 3,366 ms |
コンパイル使用メモリ | 257,868 KB |
実行使用メモリ | 34,432 KB |
最終ジャッジ日時 | 2024-09-30 03:07:02 |
合計ジャッジ時間 | 7,081 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 WA * 38 |
ソースコード
#include <bits/stdc++.h> #include <iterator> #include <ranges> #include <vector> namespace nono { template <class T> struct EdgeBase { int from; int to; T weight; EdgeBase() {} EdgeBase(int from, int to, T weight = 1): from(from), to(to), weight(weight) {} }; using Edge = EdgeBase<int>; template <class T> using WeightedEdge = EdgeBase<T>; template <class T> class Graph { struct Edge_ { int to; T weight; int id; }; using iterator = std::vector<Edge_>::iterator; using const_iterator = std::vector<Edge_>::const_iterator; using subrange = std::ranges::subrange<iterator, iterator>; using const_subrange = std::ranges::subrange<const_iterator, const_iterator>; public: template <class U> friend Graph<U> to_undirected_graph(int n, const std::vector<EdgeBase<U>>& edges); template <class U> friend Graph<U> to_directed_graph(int n, const std::vector<EdgeBase<U>>& edges); subrange operator[](int i) { return std::ranges::subrange(edges_.begin() + indptr_[i], edges_.begin() + indptr_[i + 1]); } const_subrange operator[](int i) const { return std::ranges::subrange(edges_.begin() + indptr_[i], edges_.begin() + indptr_[i + 1]); } int size() const { return n_; } int edge_size() const { return m_; } bool is_directed() const { return directed_; } bool is_undirected() const { return !is_directed(); } private: Graph(int n, const std::vector<EdgeBase<T>>& edges, bool directed) : n_(n), m_(edges.size()), indptr_(n_ + 1), edges_(directed ? edges.size() : 2 * edges.size()), directed_(directed) { for (const auto& e: edges) { indptr_[e.from + 1]++; if (!directed_) indptr_[e.to + 1]++; } for (int i = 0; i < n_; i++) { indptr_[i + 1] += indptr_[i]; } auto index = indptr_; for (int i = 0; i < std::ssize(edges); i++) { const auto& e = edges[i]; edges_[index[e.from]++] = Edge_(e.to, e.weight, i); if (!directed_) edges_[index[e.to]++] = Edge_(e.from, e.weight, i); } } int n_; int m_; std::vector<int> indptr_; std::vector<Edge_> edges_; bool directed_; }; template <class T> Graph<T> to_undirected_graph(int n, const std::vector<EdgeBase<T>>& edges) { return Graph<T>(n, edges, false); } template <class T> Graph<T> to_directed_graph(int n, const std::vector<EdgeBase<T>>& edges) { return Graph<T>(n, edges, true); } } // namespace nono namespace nono { void solve() { int n; std::cin >> n; std::vector<Edge> edges; for (int i = 0; i + 1 < n; i++) { int u, v; std::cin >> u >> v; u--; v--; edges.emplace_back(u, v); } auto graph = to_undirected_graph(n, edges); std::vector<int> bdp(n); std::vector<int> wdp(n); { auto dfs = [&](auto self, int u, int p) -> void { bdp[u] = 1; wdp[u] = 0; for (auto e: graph[u]) { if (e.to == p) continue; self(self, e.to, u); bdp[u] += wdp[e.to]; wdp[u] += bdp[e.to]; } }; dfs(dfs, 0, -1); } int ans = 1e9; { auto dfs = [&](auto self, int u, int p, int pwv, int pbv) -> void { int black = 1; for (auto e: graph[u]) { if (e.to == p) { black += pwv; } else { black += wdp[e.to]; } } ans = std::min(ans, black); int white = 0; for (auto e: graph[u]) { if (e.to == p) { white += pbv; } else { white += bdp[e.to]; } } for (auto e: graph[u]) { if (e.to == p) continue; self(self, e.to, u, white - bdp[e.to], black - wdp[e.to]); } }; dfs(dfs, 0, -1, 0, 0); } std::cout << ans << '\n'; } } // namespace nono int main() { std::cin.tie(0)->sync_with_stdio(0); std::cout << std::fixed << std::setprecision(16); int t = 1; while (t--) nono::solve(); }