結果

問題 No.2625 Bouns Ai
ユーザー 👑 p-adicp-adic
提出日時 2024-03-19 16:11:28
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 298 ms / 2,000 ms
コード長 49,241 bytes
コンパイル時間 3,373 ms
コンパイル使用メモリ 238,020 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-09-30 05:35:24
合計ジャッジ時間 9,273 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef INCLUDE_MODE
#define INCLUDE_MODE
// #define REACTIVE
// #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN
IN VO Solve()
{
CIN( int , N );
vector<int> A( N + 1 );
FOREQ( i , 1 , N ){
cin >> A[i];
}
CEXPR( int , L , 1e5 );
BIT<MP> count( L + 1 );
count.Set( 0 , 1 );
FOREQ( i , 1 , N ){
vector<MP> count_next( L + 1 );
int j_max = L - A[i];
FOREQ( j , 0 , j_max ){
int B_max = min( j , j + A[i] - A[i-1] );
count_next[j] = count.InitialSegmentSum( B_max );
}
count.Initialise( count_next );
}
RETURN( count.InitialSegmentSum( L ) );
}
REPEAT_MAIN(1);
#else // INCLUDE_MAIN
#ifdef INCLUDE_SUB
// COMPARE使
ll Naive( ll N , ll M , ll K )
{
ll answer = N + M + K;
return answer;
}
// COMPARE使
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
//
IN VO Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
//
IN VO SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// }
}
//
IN VO RandomTest()
{
// CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );
// CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M );
// CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K );
// COMPARE( N , M , N );
}
#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_SUB
#ifdef INCLUDE_LIBRARY
/*
C-x 3 C-x o C-x C-f
BFS (5KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
CoordinateCompress (3KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txt
DFSOnTree (11KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hpp
Divisor (4KB)
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
IntervalAddBIT (9KB)
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txt
Polynomial (21KB)
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
UnionFind (3KB)
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt
*/
// VVV
// static_assertU=llint
#define SFINAE_FOR_BIT_BS enable_if_t<is_invocable_r_v<bool,F,U,int>>*
//
// (1) MU
//
// M.Inverse()使SetIntervalSum調BinarySearch
// AddInitialSegmentSumBinarySearch使
// M.Inverse()MU
// O(size)
// O(log_2 size)
// U.Sum()LSBO(1)a[j-(j&-j)]+...+a[j-1]
// U.Sum()O(log_2 size)
// U.Sum()O(log_2 size)
// O(log_2 size)
// U.Sum()O(log_2 size)
// U.Sum()O(size)
//
// (2) operator<(const U&,const U&)MU
// (3) M.One()
//
// U.Sum()uO(log_2 size)
// U.Sum()uO(log_2 size)
template <typename U , typename ABELIAN_GROUP>
class AbstractBIT
{
protected:
ABELIAN_GROUP m_M;
int m_size;
vector<U> m_fenwick;
int m_power;
public:
inline AbstractBIT( ABELIAN_GROUP M , const int& size = 0 );
inline AbstractBIT( ABELIAN_GROUP M , const vector<U>& a );
template <typename...Args> inline void Initialise( const Args&... args );
inline void Set( const int& i , const U& u );
inline AbstractBIT<U,ABELIAN_GROUP>& operator+=( const vector<U>& a );
void Add( const int& i , const U& u );
inline const int& size() const noexcept;
// const
inline U operator[]( const int& i ) const;
inline U Get( const int& i ) const;
inline const U& LSBSegmentSum( const int& j ) const;
U InitialSegmentSum( const int& i_final );
inline U IntervalSum( const int& i_start , const int& i_final );
// F調f:U \times int -> {0,1}
// f( InitialSegmentSum( i ) , i )truei2
// N2×2-1N
template <typename F , SFINAE_FOR_BIT_BS = nullptr> int BinarySearch( const F& f );
// f( IntervalSum( i_start , i ) , i )truei_starti
// 2N
template <typename F , SFINAE_FOR_BIT_BS = nullptr> inline int BinarySearch( const int& i_start , const F& f );
// InitialSegmentSum( i )ui2
// N
inline int BinarySearch( const U& u );
// IntervalSum( i_start , i )ui_starti
// 2N
inline int BinarySearch( const int& i_start , const U& u );
private:
inline void Construct();
};
template <typename ABELIAN_GROUP , typename...Args> AbstractBIT( ABELIAN_GROUP M , const Args&... args ) -> AbstractBIT<inner_t<ABELIAN_GROUP
    >,ABELIAN_GROUP>;
template <typename U = ll>
class BIT :
public AbstractBIT<U,AdditiveGroup<U>>
{
public:
template <typename...Args> inline BIT( const Args&... args );
};
template <typename U> BIT( const vector<U>& a ) -> BIT<U>;
template <typename U , typename ABELIAN_GROUP> inline AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT( ABELIAN_GROUP M , const int& size ) : m_M( move( M )
    ) , m_size( size ) , m_fenwick( m_size + 1 , m_M.Zero() ) , m_power( 1 ) { Construct(); }
template <typename U , typename ABELIAN_GROUP> inline AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT( ABELIAN_GROUP M , const vector<U>& a ) : m_M( move(
    M ) ) , m_size( a.size() ) , m_fenwick( m_size + 1 , m_M.Zero() ) , m_power( 1 )
{
Construct();
for( int j = 1 ; j <= m_size ; j++ ){
U& fenwick_j = m_fenwick[j];
int i = j - 1;
fenwick_j = a[i];
int i_lim = j - ( j & -j );
while( i > i_lim ){
fenwick_j = m_M.Sum( move( fenwick_j ) , m_fenwick[i] );
i -= ( i & -i );
}
}
}
template <typename U , typename ABELIAN_GROUP> inline void AbstractBIT<U,ABELIAN_GROUP>::Construct()
{
static_assert( is_same_v<U,inner_t<ABELIAN_GROUP>> );
while( m_power < m_size ){
m_power <<= 1;
}
}
template <typename U> template <typename...Args> inline BIT<U>::BIT( const Args&... args ) : AbstractBIT<U,AdditiveGroup<U>>( AdditiveGroup<U>() ,
    args... ) { static_assert( !is_same_v<U,int> ); }
template <typename U , typename ABELIAN_GROUP> template <typename...Args> inline void AbstractBIT<U,ABELIAN_GROUP>::Initialise( const Args&... args )
    { AbstractBIT<U,ABELIAN_GROUP> temp{ m_M , args... }; m_size = temp.m_size; m_fenwick = move( temp.m_fenwick ); m_power = temp.m_power; }
template <typename U , typename ABELIAN_GROUP> inline void AbstractBIT<U,ABELIAN_GROUP>::Set( const int& i , const U& u ) { Add( i , m_M.Sum( m_M
    .Inverse( IntervalSum( i , i ) ) , u ) ); }
template <typename U , typename ABELIAN_GROUP> inline AbstractBIT<U,ABELIAN_GROUP>& AbstractBIT<U,ABELIAN_GROUP>::operator+=( const vector<U>& a ) {
    AbstractBIT<U,ABELIAN_GROUP> a_copy{ m_M , a }; assert( m_size == a_copy.m_size ); for( int j = 1 ; j <= m_size ; j++ ){ U& fenwick_j =
    m_fenwick[j]; fenwick_j = m_M.Sum( move( fenwick_j ) , a.m_fenwick[j] ); } return *this; }
template <typename U , typename ABELIAN_GROUP>
void AbstractBIT<U,ABELIAN_GROUP>::Add( const int& i , const U& u )
{
int j = i + 1;
while( j <= m_size ){
U& fenwick_j = m_fenwick[j];
fenwick_j = m_M.Sum( move( fenwick_j ) , u );
j += ( j & -j );
}
return;
}
template <typename U , typename ABELIAN_GROUP> inline const int& AbstractBIT<U,ABELIAN_GROUP>::size() const noexcept { return m_size; }
template <typename U , typename ABELIAN_GROUP> inline U AbstractBIT<U,ABELIAN_GROUP>::operator[]( const int& i ) const { assert( i < m_size ); return
    IntervalSum( i , i ); }
template <typename U , typename ABELIAN_GROUP> inline U AbstractBIT<U,ABELIAN_GROUP>::Get( const int& i ) const { return operator[]( i ); }
template <typename U , typename ABELIAN_GROUP> inline const U& AbstractBIT<U,ABELIAN_GROUP>::LSBSegmentSum( const int& j ) const { assert( 0 < j && j
    <= m_size ); return m_fenwick[j]; }
template <typename U , typename ABELIAN_GROUP>
U AbstractBIT<U,ABELIAN_GROUP>::InitialSegmentSum( const int& i_final )
{
U sum = m_M.Zero();
int j = min( i_final + 1 , m_size );
while( j > 0 ){
sum = m_M.Sum( move( sum ) , m_fenwick[j] );
j -= j & -j;
}
return sum;
}
template <typename U , typename ABELIAN_GROUP> inline U AbstractBIT<U,ABELIAN_GROUP>::IntervalSum( const int& i_start , const int& i_final ) { return
    m_M.Sum( m_M.Inverse( InitialSegmentSum( i_start - 1 ) ) , InitialSegmentSum( i_final ) ); }
template <typename U , typename ABELIAN_GROUP> template <typename F , SFINAE_FOR_BIT_BS>
int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch( const F& f )
{
int j = 0;
int power = m_power;
U sum = m_M.Zero();
U sum_next = sum;
while( power > 0 ){
int j_next = j | power;
if( j_next <= m_size ){
sum_next = m_M.Sum( move( sum_next ) , m_fenwick[j_next] );
if( f( sum_next , j_next - 1 ) ){
sum_next = sum;
} else {
sum = sum_next;
j = j_next;
}
}
power >>= 1;
}
// f( InitialSegmentSum( i ) , i )falseij
// 1j=0
// f( InitialSegmentSum( i ) , i )truei
// ji
return j;
}
template <typename U , typename ABELIAN_GROUP> template <typename F , SFINAE_FOR_BIT_BS> inline int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch( const
    int& i_start , const F& f ) { const U u_inv = m_M.Inverse( InitialSegmentSum( i_start - 1 ) ); return max( i_start , BinarySearch( [&]( const U&
    sum , const int& i ){ return i_start <= i && f( m_M.Sum( u_inv , sum ) , i ); } ) ); }
template <typename U , typename ABELIAN_GROUP> inline int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch( const U& u ) { return BinarySearch( [&]( const
    U& sum , const int& ){ return !( sum < u ); } ); }
template <typename U , typename ABELIAN_GROUP> inline int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch( const int& i_start , const U& u ) { return max(
    i_start , BinarySearch( m_M.Sum( InitialSegmentSum( i_start - 1 ) , u ) ) ); }
// AAA
#define INCLUDE_SUB
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num ,
      BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( ""
      ); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode ==
      small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "" ); SET_LL(
      test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode
      ){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); }
#define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){
      SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL
#endif
#ifdef REACTIVE
#define ENDL endl
#else
#define ENDL "\n"
#endif
#ifdef USE_GETLINE
#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#else
#define SET_LL( A ) cin >> A
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; }
#define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N );
#endif
#include <bits/stdc++.h>
using namespace std;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve
    (); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( A , N , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( A , N , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__
    , ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }
//
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
#define reSZ resize
//
#define decldecay_t(VAR)decay_t<decltype(VAR)>
TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));
TE <TY T> US inner_t = TY T::type;
US uint = unsigned int;
US ll = long long;
US ull = unsigned long long;
US ld = long double;
US lld = __float128;
TE <TY INT> US T2 = pair<INT,INT>;
TE <TY INT> US T3 = tuple<INT,INT,INT>;
TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;
US path = pair<int,ll>;
//
#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO V<Arg>& arg){auto BE = arg.BE
    (),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;}
TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is){RE is;}
TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is,Arg& arg,ARGS&... args){RE VariadicCin(is
    >> arg,args...);}
TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator){RE is;}
TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator,Arg& arg,ARGS&...
    args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}
DF_OF_COUT_FOR_VE(VE);
DF_OF_COUT_FOR_VE(LI);
DF_OF_COUT_FOR_VE(set);
DF_OF_COUT_FOR_VE(unordered_set);
TE <CL Traits,TY Arg1,TY Arg2> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " "
    << arg.second;}
TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg& arg){RE os << arg;}
TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg1& arg1,CO Arg2& arg2,CO
    ARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);}
//
TE <TY T> CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);}
TE <TY T> CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);}
TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;}
TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);}
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \
decldecay_t( ARGUMENT ) ANSWER{ 1 }; \
{ \
decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \
ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \
decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \
ll ANSWER[CE_LENGTH]; \
ll ANSWER_INV[CE_LENGTH]; \
ll INVERSE[CE_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= CO_TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
{ \
ll L_BS = MINIMUM; \
ll U_BS = MAXIMUM; \
ANSWER = UPDATE_ANSWER; \
ll EXPRESSION_BS; \
CO ll CO_TARGET_BS = ( CO_TARGET ); \
ll DIFFERENCE_BS; \
WH( L_BS < U_BS ){ \
DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS ,
          DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \
if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \
U_BS = UPDATE_U; \
} else { \
L_BS = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( L_BS > U_BS ){ \
CERR( "" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \
CERR( "" , #EXPRESSION , "" ); \
CERR( "" ); \
EXPRESSION_BS = ( EXPRESSION ); \
CERR( "" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" )
          , CO_TARGET_BS ); \
if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \
CERR( "" , #ANSWER , ":=" , ANSWER ); \
} else { \
CERR( "" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \
CERR( "調調調" ); \
ANSWER = MAXIMUM + 1; \
} \
} \
} \
// 調EXPRESSION >= CO_TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER ,
    ANSWER + 1 , ( L_BS + U_BS ) / 2 )
// 調EXPRESSION <= CO_TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 ,
    ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 調EXPRESSION >= CO_TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 ,
    ANSWER , ( L_BS + 1 + U_BS ) / 2 )
// 調EXPRESSION <= CO_TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER ,
    ANSWER + 1 , ( L_BS + U_BS ) / 2 )
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLeq(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find
    (*(S.rBE())):IT == S.BE()?EN:--IT;}
// titeratorend()
TE <TY T> IN TY set<T>::iterator MaximumLt(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find
    (*(S.rBE())):IT == S.BE()?EN:--IT;}
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGeq(set<T>& S,CO T& t){RE S.lower_bound(t);}
// titeratorend()
TE <TY T> IN TY set<T>::iterator MinimumGt(set<T>& S,CO T& t){RE S.upper_bound(t);}
//
// VAR_TPAINITUPDATECONTINUE_CONDITIONON_CONDITION
// trueONfalseOFFON[VAR_TPA_L,VAR_TPA_R)
#define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \
{ \
auto VAR_TPA = INIT; \
auto VAR_TPA ## _L = VAR_TPA; \
auto VAR_TPA ## _R = VAR_TPA; \
bool on_TPA = false; \
int state_TPA = 3; \
WH( CONTINUE_CONDITION ){ \
bool on_TPA_next = ON_CONDITION; \
state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \
CERR( " [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ?
          "on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \
if( state_TPA == 0 ){ \
OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \
} else if( state_TPA == 1 ){ \
OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \
} else if( state_TPA == 2 ){ \
ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \
} else { \
ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \
} \
on_TPA = on_TPA_next; \
} \
CERR( " [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \
FINISH; \
} \
//
TE <TY T,TE <TY...> TY V> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty()){RE a1;}if
    (a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0
    + *IT1);}RE AN;}
TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};}
TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2
    >(t1)};}
TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2
    >(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};}
TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;}
TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;}
TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;}
TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;}
TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;}
TE <TY T> IN T Id(CO T& v){RE v;}
TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;}
TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;}
//
TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};}
TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}
//
int H,W,H_minus,W_minus,HW;
VE<string> wall_str;VE<VE<bool> > non_wall;
char walkable = '.',unwalkable = '#';
IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}
IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}
CO string direction[4]={"U","R","D","L"};
IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}
IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}
IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;}
IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1
    <H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1
    <W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;}
IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if
    (i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}
    ),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;}
IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);}
IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable
    ?false:(AS(S_i[j]==unwalkable),true);}}
//
#ifdef DEBUG
IN VO AlertAbort( int n ) { CERR( "abortassert
      " ); }
VO AutoCheck( int& exec_mode , CO bool& use_getline );
IN VO Solve();
IN VO Experiment();
IN VO SmallTest();
IN VO RandomTest();
ll GetRand( CRL Rand_min , CRL Rand_max );
IN VO BreakPoint( CRI LINE ) {}
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , sample_debug_mode , 1 );
CEXPR( int , submission_debug_mode , 2 );
CEXPR( int , library_search_mode , 3 );
CEXPR( int , experiment_mode , 4 );
CEXPR( int , small_test_mode , 5 );
CEXPR( int , random_test_mode , 6 );
#ifdef USE_GETLINE
CEXPR( bool , use_getline , true );
#else
CEXPR( bool , use_getline , false );
#endif
#else
ll GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }
#endif
// VVV
// Map (1KB)
// c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txt
CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CE
    CO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};
TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;
// Algebra (4KB)
// c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0
    ;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU
    VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U
    >{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U
    );IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U =
    ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U
    Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1
    );};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U
    >::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U
    ,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U
    >::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U
    >::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 +=
    u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO
    U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PU
    VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY
    U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY
    M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> IN
    MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U
    e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU
    VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL
    AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U
    ,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U
    )){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}
// Graph (5KB)
// c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txt
TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2
    Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(CO
    T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge
    );IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge
    );IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E
    >CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN
    EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T
    ,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E>
    EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE
    <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,E
    edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY
    E> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)->
    MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;
TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>
    && is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge
    )){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv
    enum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv
    )){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory
    (),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY
    Enum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T
    MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E
    >::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO
    PATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>
    IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI
    MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]=
    m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset
    (){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T
    ,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E
    >::Edge(CO T& t){RE m_edge(t);}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY
    Enum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE
    EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F>
    MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}
// ConstexprModulo (7KB)
// c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
#define RP Represent
#define DeRP Derepresent
CEXPR(uint,P,998244353);
TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE CO
    uint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -=
    n_uq;}
#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE
#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;
#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}
#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M>
    OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}
TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP
    +=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n
    );TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD
    (==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE
    );DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE
    <TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap
    (Mod<M>& n)NE;CE CO uint& RP()CO NE;ST CE Mod<M> DeRP(CO uint& n)NE;ST IN CO Mod<M>& Inverse(CO uint& n);ST IN CO Mod<M>& Factorial(CO uint& n
    );ST IN CO Mod<M>& FactorialInverse(CO uint& n);ST IN Mod<M> Combination(CO uint& n,CO uint& i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one
    ()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;ST CE uint&
    Normalise(uint& n)NE;};
US MP = Mod<P>;
TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound =
#ifdef DEBUG
1e3;
#else
1e6;
#endif
ST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uint
    g_M_minus_2_neg = 2 - M;};
TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n
    )){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP
    =(Mod<M> n)NE{RE Ref(m_n = MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M
    >& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref
    (m_n = RS<M>(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy
    )));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH
    *= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=
    1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int
    )NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CE
    Mod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD
    (>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n
    ,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TY
    INT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO
    (n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n
    = M - m_n:m_n);}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n
    ).m_n):((m_n_neg = M - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE
    <uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH
    ;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE <uint M> TE <TY INT> CE
    Mod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW
    (MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CO uint& n){AS(n <
    COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr]
    .m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CO uint& n){AS(n <
    COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]=
    memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CO uint& n){ST Mod<M>
    memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr
    );LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)*
    FactorialInverse(n - i):zero();}TE <uint M> CE CO uint& Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CO uint& n)NE{Mod<M>
    n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one
    ()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n
    )NE{RE n < M?n:n -= M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_CE(Mod<M> n)NE{RE MO
    (n.NonNegativePW(M - 2));}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1
    )NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> IN
    basic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char
    ,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}
// AAA
#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_SUB
#endif // INCLUDE_MAIN
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0