結果
問題 | No.2625 Bouns Ai |
ユーザー |
👑 |
提出日時 | 2024-03-19 16:38:24 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 321 ms / 2,000 ms |
コード長 | 51,067 bytes |
コンパイル時間 | 3,089 ms |
コンパイル使用メモリ | 238,648 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-09-30 05:36:16 |
合計ジャッジ時間 | 9,040 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 23 |
ソースコード
#ifndef INCLUDE_MODE#define INCLUDE_MODE// #define REACTIVE// #define USE_GETLINE#endif#ifdef INCLUDE_MAININ VO Solve(){CIN( int , N );vector<int> A( N + 1 );FOREQ( i , 1 , N ){cin >> A[i];}CEXPR( int , L , 1e5 );HybridBIT<MP> count( L + 1 );count.Set( 0 , 1 );FOREQ( i , 1 , N ){vector<MP> count_next( L + 1 );int j_max = L - A[i];FOREQ( j , 0 , j_max ){int B_max = min( j , j + A[i] - A[i-1] );count_next[j] = count.InitialSegmentSum( B_max );}count.Initialise( count_next );}RETURN( count.InitialSegmentSum( L ) );}REPEAT_MAIN(1);#else // INCLUDE_MAIN#ifdef INCLUDE_SUB// COMPAREに使用。圧縮時は削除する。ll Naive( ll N , ll M , ll K ){ll answer = N + M + K;return answer;}// COMPAREに使用。圧縮時は削除する。ll Answer( ll N , ll M , ll K ){// START_WATCH;ll answer = N + M + K;// // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。// CEXPR( double , TL , 2000.0 );// while( CHECK_WATCH( TL ) ){// }return answer;}// 圧縮時は中身だけ削除する。IN VO Experiment(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COUT( N , M , K , ":" , Naive( N , M , K ) );// }// }// // cout << Naive( N ) << ",\n"[N==bound];// }}// 圧縮時は中身だけ削除する。IN VO SmallTest(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COMPARE( N , M , K );// }// }// }}// 圧縮時は中身だけ削除する。IN VO RandomTest(){// CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );// CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 1 , bound_M );// CEXPR( ll , bound_K , 1e9 ); CIN_ASSERT( K , 1 , bound_K );// COMPARE( N , M , N );}#define INCLUDE_MAIN#include __FILE__#else // INCLUDE_SUB#ifdef INCLUDE_LIBRARY/*C-x 3 C-x o C-x C-fによるファイル操作用BFS (5KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txtCoordinateCompress (3KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/CoordinateCompress/compress.txtDFSOnTree (11KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepthFirstSearch/Tree/a.hppDivisor (4KB)c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txtIntervalAddBIT (9KB)c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/IntervalAdd/compress.txtPolynomial (21KB)c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txtUnionFind (3KB)c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/UnionFindForest/compress.txt*/// VVV 常設でないライブラリは以下に挿入する。TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TYMAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMAmagma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:INAbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(CO R& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);};TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY U,TY MAGMA> IN U RegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));}#define SFINAE_FOR_BIT_BS enable_if_t<is_invocable_r_v<bool,F,U,int>>*TE <TY U,TY ABELIAN_GROUP>CL AbstractBIT{PU:ABELIAN_GROUP m_M;int m_SZ;VE<U> m_fenwick;int m_PW;IN AbstractBIT(ABELIAN_GROUP M,CRI SZ = 0);INAbstractBIT(ABELIAN_GROUP M,CO VE<U>& a);IN AbstractBIT<U,ABELIAN_GROUP>& OP=(AbstractBIT<U,ABELIAN_GROUP>&& bit);TE <TY...Args> IN VO Initialise(CO Args&... args);IN VO Set(CRI i,CO U& u);IN AbstractBIT<U,ABELIAN_GROUP>& OP+=(CO VE<U>& a);VO Add(CRI i,CO U& u);IN CRI SZ()CO NE;IN U OP[](CRI i)CO;IN U Get(CRI i)CO;IN CO U& LSBSegmentSum(CRI j)CO;U InitialSegmentSum(CRI i_final);IN U IntervalSum(CRI i_start,CRI i_final);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> int BinarySearch(CO F& f);TE <TY F,SFINAE_FOR_BIT_BS = nullptr> IN int BinarySearch(CRI i_start,CO F& f);IN intBinarySearch(CO U& u);IN int BinarySearch(CRI i_start,CO U& u);IN VO COruct();};TE <TY ABELIAN_GROUP,TY...Args> AbstractBIT(ABELIAN_GROUP M,COArgs&... args)-> AbstractBIT<inner_t<ABELIAN_GROUP>,ABELIAN_GROUP>;TE <TY U = ll>CL BIT:PU AbstractBIT<U,AdditiveGroup<U>>{PU:TE <TY...Args> INBIT(CO Args&... args);};TE <TY U> BIT(CO VE<U>& a)-> BIT<U>;TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CRI SZ):m_M(MO(M)),m_SZ(SZ),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();}TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>::AbstractBIT(ABELIAN_GROUP M,CO VE<U>& a):m_M(MO(M)),m_SZ(a.SZ()),m_fenwick(m_SZ + 1,m_M.Zero()),m_PW(1){COruct();for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];int i = j - 1;fenwick_j = a[i];inti_lim = j -(j & -j);WH(i > i_lim){fenwick_j = m_M.Sum(MO(fenwick_j),m_fenwick[i]);i -=(i & -i);}}}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::COruct(){ST_AS(is_same_v<U,inner_t<ABELIAN_GROUP>>);WH(m_PW < m_SZ){m_PW <<= 1;}}TE <TY U> TE <TY...Args> IN BIT<U>::BIT(COArgs&... args):AbstractBIT<U,AdditiveGroup<U>>(AdditiveGroup<U>(),args...){ST_AS(!is_same_v<U,int>);}TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>& AbstractBIT<U,ABELIAN_GROUP>::OP=(AbstractBIT<U,ABELIAN_GROUP>&& bit){m_SZ = bit.m_SZ;m_fenwick = MO(bit.m_fenwick);m_PW = bit.m_PW;RE *TH;}TE <TY U,TY ABELIAN_GROUP> TE <TY...Args> IN VO AbstractBIT<U,ABELIAN_GROUP>::Initialise(CO Args&... args){*TH = AbstractBIT<U,ABELIAN_GROUP>{m_M,args...};}TE <TY U,TY ABELIAN_GROUP> IN VO AbstractBIT<U,ABELIAN_GROUP>::Set(CRI i,CO U& u){Add(i,m_M.Sum(m_M.Inverse(IntervalSum(i,i)),u));}TE <TY U,TY ABELIAN_GROUP> IN AbstractBIT<U,ABELIAN_GROUP>& AbstractBIT<U,ABELIAN_GROUP>::OP+=(CO VE<U>& a){AbstractBIT<U,ABELIAN_GROUP> a_copy{m_M,a};AS(m_SZ == a_copy.m_SZ);for(int j = 1;j <= m_SZ;j++){U& fenwick_j = m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),a.m_fenwick[j]);}RE *TH;}TE <TY U,TY ABELIAN_GROUP>VO AbstractBIT<U,ABELIAN_GROUP>::Add(CRI i,CO U& u){int j = i + 1;WH(j <= m_SZ){U& fenwick_j= m_fenwick[j];fenwick_j = m_M.Sum(MO(fenwick_j),u);j +=(j & -j);}RE;}TE <TY U,TY ABELIAN_GROUP> IN CRI AbstractBIT<U,ABELIAN_GROUP>::SZ()CONE{RE m_SZ;}TE <TY U,TY ABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::OP[](CRI i)CO{AS(i < m_SZ);RE IntervalSum(i,i);}TE <TY U,TYABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::Get(CRI i)CO{RE OP[](i);}TE <TY U,TY ABELIAN_GROUP> IN CO U& AbstractBIT<U,ABELIAN_GROUP>::LSBSegmentSum(CRI j)CO{AS(0 < j && j <= m_SZ);RE m_fenwick[j];}TE <TY U,TY ABELIAN_GROUP>U AbstractBIT<U,ABELIAN_GROUP>::InitialSegmentSum(CRIi_final){U sum = m_M.Zero();int j = min(i_final + 1,m_SZ);WH(j > 0){sum = m_M.Sum(MO(sum),m_fenwick[j]);j -= j & -j;}RE sum;}TE <TY U,TYABELIAN_GROUP> IN U AbstractBIT<U,ABELIAN_GROUP>::IntervalSum(CRI i_start,CRI i_final){RE m_M.Sum(m_M.Inverse(InitialSegmentSum(i_start - 1)),InitialSegmentSum(i_final));}TE <TY U,TY ABELIAN_GROUP> TE <TY F,SFINAE_FOR_BIT_BS>int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch(CO F& f){intj = 0;int PW = m_PW;U sum = m_M.Zero();U sum_next = sum;WH(PW > 0){int j_next = j | PW;if(j_next <= m_SZ){sum_next = m_M.Sum(MO(sum_next),m_fenwick[j_next]);if(f(sum_next,j_next - 1)){sum_next = sum;}else{sum = sum_next;j = j_next;}}PW >>= 1;}RE j;}TE <TY U,TY ABELIAN_GROUP> TE<TY F,SFINAE_FOR_BIT_BS> IN int AbstractBIT<U,ABELIAN_GROUP>::BinarySearch(CRI i_start,CO F& f){CO U u_inv = m_M.Inverse(InitialSegmentSum(i_start - 1));RE max(i_start,BinarySearch([&](CO U& sum,CRI i){RE i_start <= i && f(m_M.Sum(u_inv,sum),i);}));}TE <TY U,TY ABELIAN_GROUP> IN intAbstractBIT<U,ABELIAN_GROUP>::BinarySearch(CO U& u){RE BinarySearch([&](CO U& sum,CRI){RE !(sum < u);});}TE <TY U,TY ABELIAN_GROUP> IN intAbstractBIT<U,ABELIAN_GROUP>::BinarySearch(CRI i_start,CO U& u){RE max(i_start,BinarySearch(m_M.Sum(InitialSegmentSum(i_start - 1),u)));}// 一点取得と一点代入の高速化のためだけに通常の配列とハイブリッドしたBIT。// メモリサイズは2倍になるので他の処理は遅くなる。// 入力の範囲内で要件// (1) MがUの可換群構造である。// を満たす場合にのみサポート。// ただしM.Inverse()を使うのはSetとIntervalSumのみなので、// AddとInitialSegmentSumしか使わない場合は// M.Inverse()を好きに設定してMをUの可換モノイド構造として良い。// 配列による初期化O(size)// 一点取得O(1)// U.Sum()によるLSB切片和取得O(1)(a[j-(j&-j)]+...+a[j-1])// U.Sum()による始切片和取得O(log_2 size)// U.Sum()による区間和取得O(log_2 size)// 一点代入O(log_2 size)(通常のBITより定数倍速い)// U.Sum()による一点加算O(log_2 size)// U.Sum()による加法O(size)// 以下は入力の範囲内で要件// (2) operator<(const U&,const U&)に関してMがUの全順序可換群構造である。// (3) 各成分がM.One()より小さくない。// を満たす場合にのみサポート。// U.Sum()による始切片和がu以上となる要素の添字の最小値の二分探索O(log_2 size)// 左端点を固定した時にU.Sum()による区間和がu以上となる要素の添字の最小値の二分探索O(log_2 size)template <typename U , typename ABELIAN_GROUP>class AbstractHybridBIT :public AbstractBIT<U,ABELIAN_GROUP>{private:vector<U> m_a;public:inline AbstractHybridBIT( ABELIAN_GROUP M , const int& size = 0 );inline AbstractHybridBIT( ABELIAN_GROUP M , vector<U> a );template <typename...Args> inline void Initialise( Args&&... args );inline void Set( const int& i , const U& u );inline AbstractHybridBIT<U,ABELIAN_GROUP>& operator+=( const vector<U>& a );inline void Add( const int& i , const U& u );inline const U& operator[]( const int& i ) const;inline const U& Get( const int& i ) const;};template <typename ABELIAN_GROUP , typename...Args> AbstractHybridBIT( ABELIAN_GROUP M , Args&&... args ) -> AbstractHybridBIT<inner_t<ABELIAN_GROUP>,ABELIAN_GROUP>;template <typename U>class HybridBIT :public AbstractHybridBIT<U,AdditiveGroup<U>>{public:template <typename...Args> inline HybridBIT( Args&&... args );};template <typename U> HybridBIT( const vector<U>& a ) -> HybridBIT<U>;template <typename U , typename ABELIAN_GROUP> inline AbstractHybridBIT<U,ABELIAN_GROUP>::AbstractHybridBIT( ABELIAN_GROUP M , const int& size ) :AbstractBIT<U,ABELIAN_GROUP>( move( M ) , size ) , m_a( size , this->m_fenwick[0] ) {}template <typename U , typename ABELIAN_GROUP> inline AbstractHybridBIT<U,ABELIAN_GROUP>::AbstractHybridBIT( ABELIAN_GROUP M , vector<U> a ) :AbstractBIT<U,ABELIAN_GROUP>( move( M ) , a ) , m_a( move( a ) ) {}template <typename U> template <typename...Args> inline HybridBIT<U>::HybridBIT( Args&&... args ) : AbstractHybridBIT<U,AdditiveGroup<U>>(AdditiveGroup<U>() , forward<Args>( args )... ) { static_assert( ! is_same_v<U,int> );}template <typename U , typename ABELIAN_GROUP> template <typename...Args> inline void AbstractHybridBIT<U,ABELIAN_GROUP>::Initialise( Args&&... args) { AbstractHybridBIT<U,ABELIAN_GROUP> temp{ this->m_M , forward<Args>( args )... }; m_a = move( temp.m_a ); AbstractBIT<U,ABELIAN_GROUP>::operator=( move( temp ) ); }template <typename U , typename ABELIAN_GROUP> inline void AbstractHybridBIT<U,ABELIAN_GROUP>::Set( const int& i , const U& u ) { Add( i , this->m_M.Sum( this->m_M.Inverse( m_a[i] ) , u ) ); }template <typename U , typename ABELIAN_GROUP> inline AbstractHybridBIT<U,ABELIAN_GROUP>& AbstractHybridBIT<U,ABELIAN_GROUP>::operator+=( constvector<U>& a ) { AbstractBIT<U,ABELIAN_GROUP>::operator+=( a ); for( int i = 0 ; i < this->m_size ; i++ ){ U& m_ai = m_a[i]; m_ai = this->m_M.Sum( move( m_ai ) , a[i] ); } return *this; }template <typename U , typename ABELIAN_GROUP> inline void AbstractHybridBIT<U,ABELIAN_GROUP>::Add( const int& i , const U& u ) { AbstractBIT<U,ABELIAN_GROUP>::Add( i , u ); U& m_ai = m_a[i]; m_ai = this->m_M.Sum( move( m_ai ) , u ); }template <typename U , typename ABELIAN_GROUP> inline const U& AbstractHybridBIT<U,ABELIAN_GROUP>::operator[]( const int& i ) const { assert( 0 <= i&& i < this->m_size ); return m_a[i]; }template <typename U , typename ABELIAN_GROUP> inline const U& AbstractHybridBIT<U,ABELIAN_GROUP>::Get( const int& i ) const { return operator[]( i); }// AAA 常設でないライブラリは以上に挿入する。#define INCLUDE_SUB#include __FILE__#else // INCLUDE_LIBRARY#ifdef DEBUG#define _GLIBCXX_DEBUG#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode , use_getline ); CEXPR( int , bound_test_case_num ,BOUND ); int test_case_num = 1; if( exec_mode == solve_mode ){ if CE( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。"); SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else { if( exec_mode == experiment_mode ){ Experiment(); } else if( exec_mode ==small_test_mode ){ SmallTest(); } else if( exec_mode == random_test_mode ){ CERR( "ランダムテストを行う回数を指定してください。" ); SET_LL(test_case_num ); REPEAT( test_case_num ){ RandomTest(); } } RE 0; } FINISH_MAIN#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )); AS( ( MIN ) <= A && A <= ( MAX ) )#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ SET_LL( A ); ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode){ CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { AS( false ); }#define SOLVE_ONLY ST_AS( __FUNCTION__[0] == 'S' )#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl#else#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if CE( bound_test_case_num > 1 ){SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )#define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )#define SOLVE_ONLY#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL#define CERR_A( A , N )#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << ENDL#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL#endif#ifdef REACTIVE#define ENDL endl#else#define ENDL "\n"#endif#ifdef USE_GETLINE#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )#else#define SET_LL( A ) cin >> A#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_SET_A , 0 , N ){ cin >> A[VARIABLE_FOR_SET_A]; }#define CIN_A( LL , A , N ) VE<LL> A( N ); SET_A( A , N );#endif#include <bits/stdc++.h>using namespace std;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define FINISH_MAIN REPEAT( test_case_num ){ if CE( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE#define SET_A_ASSERT( A , N , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A] , MIN , MAX ); }#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )#define CIN_A_ASSERT( A , N , MIN , MAX ) vector<decldecay_t( MAX )> A( N ); SET_A_ASSERT( A , N , MIN , MAX )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .BE() , end_ ## ARRAY = ARRAY .EN()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.BE() , EN_FOR_OUTPUT_ITR = A.EN(); bool VARIABLE_FOR_OUTPUT_ITR =ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; WH( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); RE#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( "(" , #__VA_ARGS__, ") == (" , __VA_ARGS__ , ") : Naive == " , naive , match ? "==" : "!=" , answer , "== Answer" ); if( !match ){ RE; }// 圧縮用#define TE template#define TY typename#define US using#define ST static#define AS assert#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define LE length#define PW Power#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&#define VI virtual#define ST_AS static_assert#define reMO_CO remove_const#define is_COructible_v is_constructible_v#define rBE rbegin#define reSZ resize// 型のエイリアス#define decldecay_t(VAR)decay_t<decltype(VAR)>TE <TY F,TY...Args> US ret_t = decltype(declval<F>()(declval<Args>()...));TE <TY T> US inner_t = TY T::type;US uint = unsigned int;US ll = long long;US ull = unsigned long long;US ld = long double;US lld = __float128;TE <TY INT> US T2 = pair<INT,INT>;TE <TY INT> US T3 = tuple<INT,INT,INT>;TE <TY INT> US T4 = tuple<INT,INT,INT,INT>;US path = pair<int,ll>;// 入出力用#define DF_OF_COUT_FOR_VE(V)TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO V<Arg>& arg){auto BE = arg.BE(),EN = arg.EN();auto IT = BE;WH(IT != EN){(IT == BE?os:os << " ")<< *IT;IT++;}RE os;}TE <CL Traits> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicCin(basic_istream<char,Traits>& is,Arg& arg,ARGS&... args){RE VariadicCin(is>> arg,args...);}TE <CL Traits> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator){RE is;}TE <CL Traits,TY Arg,TY... ARGS> IN basic_istream<char,Traits>& VariadicGetline(basic_istream<char,Traits>& is,CO char& separator,Arg& arg,ARGS&...args){RE VariadicGetline(getline(is,arg,separator),separator,args...);}DF_OF_COUT_FOR_VE(VE);DF_OF_COUT_FOR_VE(LI);DF_OF_COUT_FOR_VE(set);DF_OF_COUT_FOR_VE(unordered_set);TE <CL Traits,TY Arg1,TY Arg2> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO pair<Arg1,Arg2>& arg){RE os << arg.first << " "<< arg.second;}TE <CL Traits,TY Arg> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg& arg){RE os << arg;}TE <CL Traits,TY Arg1,TY Arg2,TY... ARGS> IN basic_ostream<char,Traits>& VariadicCout(basic_ostream<char,Traits>& os,CO Arg1& arg1,CO Arg2& arg2,COARGS&... args){RE VariadicCout(os << arg1 << " ",arg2,args...);}// 算術用TE <TY T> CE T PositiveBaseRS(CO T& a,CO T& p){RE a >= 0?a % p:p - 1 -((-(a + 1))% p);}TE <TY T> CE T RS(CO T& a,CO T& p){RE PositiveBaseRS(a,p < 0?-p:p);}TE <TY T> CE T PositiveBaseQuotient(CO T& a,CO T& p){RE(a - PositiveBaseRS(a,p))/ p;}TE <TY T> CE T Quotient(CO T& a,CO T& p){RE p < 0?PositiveBaseQuotient(-a,-p):PositiveBaseQuotient(a,p);}#define POWER( ANSWER , ARGUMENT , EXPONENT ) \ST_AS( ! is_same<decldecay_t( ARGUMENT ),int>::value && ! is_same<decldecay_t( ARGUMENT ),uint>::value ); \decldecay_t( ARGUMENT ) ANSWER{ 1 }; \{ \decldecay_t( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( ARGUMENT ) % ( MODULO ) ) % ( MODULO ); \ARGUMENT_FOR_SQUARE_FOR_POWER < 0 ? ARGUMENT_FOR_SQUARE_FOR_POWER += ( MODULO ) : ARGUMENT_FOR_SQUARE_FOR_POWER; \decldecay_t( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \WH( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CE_LENGTH , MODULO ) \ll ANSWER[CE_LENGTH]; \ll ANSWER_INV[CE_LENGTH]; \ll INVERSE[CE_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索用// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= CO_TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , CO_TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ST_AS( ! is_same<decldecay_t( CO_TARGET ),uint>::value && ! is_same<decldecay_t( CO_TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \{ \ll L_BS = MINIMUM; \ll U_BS = MAXIMUM; \ANSWER = UPDATE_ANSWER; \ll EXPRESSION_BS; \CO ll CO_TARGET_BS = ( CO_TARGET ); \ll DIFFERENCE_BS; \WH( L_BS < U_BS ){ \DIFFERENCE_BS = ( EXPRESSION_BS = ( EXPRESSION ) ) - CO_TARGET_BS; \CERR( "二分探索中:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS :" , #EXPRESSION , "=" , EXPRESSION_BS ,DIFFERENCE_BS > 0 ? ">" : DIFFERENCE_BS < 0 ? "<" : "=" , CO_TARGET_BS , "=" , #CO_TARGET ); \if( DIFFERENCE_BS INEQUALITY_FOR_CHECK 0 ){ \U_BS = UPDATE_U; \} else { \L_BS = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \if( L_BS > U_BS ){ \CERR( "二分探索失敗:" , "L_BS =" , L_BS , ">" , U_BS , "= U_BS :" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \CERR( "二分探索マクロにミスがある可能性があります。変更前の版に戻してください。" ); \ANSWER = MAXIMUM + 1; \} else { \CERR( "二分探索終了:" , "L_BS =" , L_BS , "<=" , #ANSWER , "=" , ANSWER , "<=" , U_BS , "= U_BS" ); \CERR( "二分探索が成功したかを確認するために" , #EXPRESSION , "を計算します。" ); \CERR( "成功判定が不要な場合はこの計算を削除しても構いません。" ); \EXPRESSION_BS = ( EXPRESSION ); \CERR( "二分探索結果:" , #EXPRESSION , "=" , EXPRESSION_BS , ( EXPRESSION_BS > CO_TARGET_BS ? ">" : EXPRESSION_BS < CO_TARGET_BS ? "<" : "=" ), CO_TARGET_BS ); \if( EXPRESSION_BS DESIRED_INEQUALITY CO_TARGET_BS ){ \CERR( "二分探索成功:" , #ANSWER , ":=" , ANSWER ); \} else { \CERR( "二分探索失敗:" , #ANSWER , ":=" , #MAXIMUM , "+ 1 =" , MAXIMUM + 1 ); \CERR( "単調でないか、単調増加性と単調減少性を逆にしてしまったか、探索範囲内に解が存在しません。" ); \ANSWER = MAXIMUM + 1; \} \} \} \// 単調増加の時にEXPRESSION >= CO_TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , >= , ANSWER ,ANSWER + 1 , ( L_BS + U_BS ) / 2 )// 単調増加の時にEXPRESSION <= CO_TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , > , ANSWER - 1 ,ANSWER , ( L_BS + 1 + U_BS ) / 2 )// 単調減少の時にEXPRESSION >= CO_TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , CO_TARGET , < , ANSWER - 1 ,ANSWER , ( L_BS + 1 + U_BS ) / 2 )// 単調減少の時にEXPRESSION <= CO_TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , CO_TARGET ) BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , CO_TARGET , <= , ANSWER ,ANSWER + 1 , ( L_BS + U_BS ) / 2 )// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。TE <TY T> IN TY set<T>::iterator MaximumLeq(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.upper_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;}// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。TE <TY T> IN TY set<T>::iterator MaximumLt(set<T>& S,CO T& t){CO auto EN = S.EN();if(S.empty()){RE EN;}auto IT = S.lower_bound(t);RE IT == EN?S.find(*(S.rBE())):IT == S.BE()?EN:--IT;}// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。TE <TY T> IN TY set<T>::iterator MinimumGeq(set<T>& S,CO T& t){RE S.lower_bound(t);}// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。TE <TY T> IN TY set<T>::iterator MinimumGt(set<T>& S,CO T& t){RE S.upper_bound(t);}// 尺取り法用// VAR_TPAがINITからUPDATEを繰り返しCONTINUE_CONDITIONを満たす限り、ON_CONDITIONを判定して// trueならON、falseならOFFとなる。直近のONの区間を[VAR_TPA_L,VAR_TPA_R)で管理する。#define TPA( VAR_TPA , INIT , UPDATE , CONTINUE_CONDITION , ON_CONDITION , ONON , ONOFF , OFFON , OFFOFF , FINISH ) \{ \auto VAR_TPA = INIT; \auto VAR_TPA ## _L = VAR_TPA; \auto VAR_TPA ## _R = VAR_TPA; \bool on_TPA = false; \int state_TPA = 3; \WH( CONTINUE_CONDITION ){ \bool on_TPA_next = ON_CONDITION; \state_TPA = ( ( on_TPA ? 1 : 0 ) << 1 ) | ( on_TPA_next ? 1 : 0 ); \CERR( "尺取り中: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA , "," , ( ( state_TPA >> 1 ) & 1 ) == 1 ?"on" : "off" , " ->" , ( state_TPA & 1 ) == 1 ? "on" : "off" ); \if( state_TPA == 0 ){ \OFFOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \} else if( state_TPA == 1 ){ \OFFON; VAR_TPA ## _L = VAR_TPA; UPDATE; VAR_TPA ## _R = VAR_TPA; \} else if( state_TPA == 2 ){ \ONOFF; VAR_TPA ## _L = VAR_TPA ## _R = VAR_TPA; UPDATE; \} else { \ONON; UPDATE; VAR_TPA ## _R = VAR_TPA; \} \on_TPA = on_TPA_next; \} \CERR( "尺取り終了: [L,R) = [" , VAR_TPA ## _L , "," , VAR_TPA ## _R , ") ," , #VAR_TPA , "=" , VAR_TPA ); \FINISH; \} \// データ構造用TE <TY T,TE <TY...> TY V> IN auto OP+(CO V<T>& a0,CO V<T>& a1)-> decldecay_t((declval<V<T>>().push_back(declval<T>()),a0)){if(a0.empty()){RE a1;}if(a1.empty()){RE a0;}AS(a0.SZ()== a1.SZ());V<T> AN{};for(auto IT0 = a0.BE(),IT1 = a1.BE(),EN0 = a0.EN();IT0 != EN0;IT0++,IT1++){AN.push_back(*IT0+ *IT1);}RE AN;}TE <TY T,TY U> IN pair<T,U> OP+(CO pair<T,U>& t0,CO pair<T,U>& t1){RE{t0.first + t1.first,t0.second + t1.second};}TE <TY T,TY U,TY V> IN tuple<T,U,V> OP+(CO tuple<T,U,V>& t0,CO tuple<T,U,V>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1)};}TE <TY T,TY U,TY V,TY W> IN tuple<T,U,V,W> OP+(CO tuple<T,U,V,W>& t0,CO tuple<T,U,V,W>& t1){RE{get<0>(t0)+ get<0>(t1),get<1>(t0)+ get<1>(t1),get<2>(t0)+ get<2>(t1),get<3>(t0)+ get<3>(t1)};}TE <TY T> IN T Addition(CO T& t0,CO T& t1){RE t0 + t1;}TE <TY T> IN T Xor(CO T& t0,CO T& t1){RE t0 ^ t1;}TE <TY T> IN T MU(CO T& t0,CO T& t1){RE t0 * t1;}TE <TY T> IN CO T& Zero(){ST CO T z{};RE z;}TE <TY T> IN CO T& One(){ST CO T o = 1;RE o;}TE <TY T> IN T AdditionInv(CO T& t){RE -t;}TE <TY T> IN T Id(CO T& v){RE v;}TE <TY T> IN T Min(CO T& a,CO T& b){RE a < b?a:b;}TE <TY T> IN T Max(CO T& a,CO T& b){RE a < b?b:a;}// グラフ用TE <TY T,TE <TY...> TY V> IN auto Get(CO V<T>& a){RE[&](CRI i = 0){RE a[i];};}TE <TY T = int> IN VE<T> id(CRI SZ){VE<T> AN(SZ);FOR(i,0,SZ){AN[i]= i;}RE AN;}// グリッド問題用int H,W,H_minus,W_minus,HW;VE<string> wall_str;VE<VE<bool> > non_wall;char walkable = '.',unwalkable = '#';IN T2<int> EnumHW(CRI v){RE{v / W,v % W};}IN int EnumHW_inv(CO T2<int>& ij){auto&[i,j]= ij;RE i * W + j;}CO string direction[4]={"U","R","D","L"};IN int DirectionNumberOnGrid(CRI i,CRI j,CRI k,CRI h){RE i<k?2:i>k?0:j<h?1:j>h?3:(AS(false),-1);}IN int DirectionNumberOnGrid(CRI v,CRI w){auto[i,j]=EnumHW(v);auto[k,h]=EnumHW(w);RE DirectionNumberOnGrid(i,j,k,h);}IN int ReverseDirectionNumberOnGrid(CRI n){AS(0<=n&&n<4);RE(n+2)%4;}IN VE<int> EdgeOnGrid(CRI v){VE<int>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back(EnumHW_inv({i-1,j}));}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back(EnumHW_inv({i+1,j}));}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back(EnumHW_inv({i,j-1}));}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back(EnumHW_inv({i,j+1}));}RE AN;}IN VE<path> WeightedEdgeOnGrid(CRI v){VE<path>AN{};auto[i,j]=EnumHW(v);if(i>0&&wall_str[i-1][j]==walkable){AN.push_back({EnumHW_inv({i-1,j}),1});}if(i+1<H&&wall_str[i+1][j]==walkable){AN.push_back({EnumHW_inv({i+1,j}),1});}if(j>0&&wall_str[i][j-1]==walkable){AN.push_back({EnumHW_inv({i,j-1}),1});}if(j+1<W&&wall_str[i][j+1]==walkable){AN.push_back({EnumHW_inv({i,j+1}),1});}RE AN;}IN VO SetWallStringOnGrid(CRI i,VE<string>& S){if(S.empty()){S.reSZ(H);}cin>>S[i];AS(int(S[i].SZ())==W);}IN VO SetWallOnGrid(CRI i,VE<VE<bool>>& b){if(b.empty()){b.reSZ(H,VE<bool>(W));}auto&S_i=wall_str[i];auto&b_i=b[i];FOR(j,0,W){b_i[j]=S_i[j]==walkable?false:(AS(S_i[j]==unwalkable),true);}}// デバッグ用#ifdef DEBUGIN VO AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }VO AutoCheck( int& exec_mode , CO bool& use_getline );IN VO Solve();IN VO Experiment();IN VO SmallTest();IN VO RandomTest();ll GetRand( CRL Rand_min , CRL Rand_max );IN VO BreakPoint( CRI LINE ) {}int exec_mode;CEXPR( int , solve_mode , 0 );CEXPR( int , sample_debug_mode , 1 );CEXPR( int , submission_debug_mode , 2 );CEXPR( int , library_search_mode , 3 );CEXPR( int , experiment_mode , 4 );CEXPR( int , small_test_mode , 5 );CEXPR( int , random_test_mode , 6 );#ifdef USE_GETLINECEXPR( bool , use_getline , true );#elseCEXPR( bool , use_getline , false );#endif#elsell GetRand( CRL Rand_min , CRL Rand_max ) { ll answer = time( NULL ); RE answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }#endif// VVV 常設ライブラリは以下に挿入する。// Map (1KB)// c:/Users/user/Documents/Programming/Mathematics/Function/Map/compress.txtCL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CECO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};TE <TY T , TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;// Algebra (4KB)// c:/Users/user/Documents/Programming/Mathematics/Algebra/compress.txt#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE#define DC_OF_POINT(POINT)IN U& POINT()NE#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PUVirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U =ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN UProduct(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN U Product(U u0,CO U& u1);};TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 +=u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,COU& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PUVirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TYU = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TYM_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};TE <TY U> INMultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,Ue_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PUVirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CLAbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}// Graph (5KB)// c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/compress.txtTE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;VI IN R2 Enumeration_inv_Body(COT& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E& edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PU EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;INEnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;IN ret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E>EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE<TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,Eedge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TYE> MemorisationGraph(CRI SZ,E edge)-> MemorisationGraph<decldecay_t(declval<E>()().back()),E>;TE <TY E> MemorisationGraph(CRI SZ,E edge)->MemorisationGraph<decldecay_t(get<0>(declval<E>()().back())),E>;TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>&& is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_invenum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E> && is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TYEnum_T_inv,TY E> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN TMemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(COPATH& p){RE Enumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRIMemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]=m_LE++;}RE m_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(CO T& t){RE m_edge(t);}TE <TY E> TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TYEnum_T_inv,TY E> TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{REEnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F>MemorisationGraph<T,E>::GetGraph(F edge)CO{RE MemorisationGraph<T,F>(TH->SZ(),MO(edge));}// ConstexprModulo (7KB)// c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt#define RP Represent#define DeRP DerepresentCEXPR(uint,P,998244353);TE <uint M,TY INT> CE INT RS(INT n)NE{RE MO(n < 0?((((++n)*= -1)%= M)*= -1)+= M - 1:n < INT(M)?n:n %= M);}TE <TY INT> CE INT& RSP(INT& n)NE{CE COuint trunc =(1 << 23)- 1;INT n_u = n >> 23;n &= trunc;INT n_uq =(n_u / 7)/ 17;n_u -= n_uq * 119;n += n_u << 23;RE n < n_uq?n += P - n_uq:n -=n_uq;}#define DC_OF_CM_FOR_MOD(OPR)CE bool OP OPR(CO Mod<M>& n)CO NE#define DC_OF_AR_FOR_MOD(OPR,EX)CE Mod<M> OP OPR(Mod<M> n)CO EX;#define DF_OF_CM_FOR_MOD(OPR)TE <uint M> CE bool Mod<M>::OP OPR(CO Mod<M>& n)CO NE{RE m_n OPR n.m_n;}#define DF_OF_AR_FOR_MOD(OPR,EX,LEFT,OPR2)TE <uint M> CE Mod<M> Mod<M>::OP OPR(Mod<M> n)CO EX{RE MO(LEFT OPR2 ## = *TH);}TE <uint M,TY T> CE Mod<M>OP OPR(T n0,CO Mod<M>& n1)EX{RE MO(Mod<M>(MO(n0))OPR ## = n1);}TE <uint M>CL Mod{PU:uint m_n;CE Mod()NE;CE Mod(CO Mod<M>& n)NE;CE Mod(Mod<M>&& n)NE;TE <TY T> CE Mod(T n)NE;CE Mod<M>& OP=(Mod<M> n)NE;CE Mod<M>& OP+=(CO Mod<M>& n)NE;CE Mod<M>& OP-=(CO Mod<M>& n)NE;CE Mod<M>& OP*=(CO Mod<M>& n)NE;IN Mod<M>& OP/=(Mod<M> n);TE <TY INT> CE Mod<M>& OP<<=(INT n);TE <TY INT> CE Mod<M>& OP>>=(INT n);CE Mod<M>& OP++()NE;CE Mod<M> OP++(int)NE;CE Mod<M>& OP--()NE;CE Mod<M> OP--(int)NE;DC_OF_CM_FOR_MOD(==);DC_OF_CM_FOR_MOD(!=);DC_OF_CM_FOR_MOD(<);DC_OF_CM_FOR_MOD(<=);DC_OF_CM_FOR_MOD(>);DC_OF_CM_FOR_MOD(>=);DC_OF_AR_FOR_MOD(+,NE);DC_OF_AR_FOR_MOD(-,NE);DC_OF_AR_FOR_MOD(*,NE);DC_OF_AR_FOR_MOD(/,);TE <TY INT> CE Mod<M> OP^(INT EX)CO;TE <TY INT> CE Mod<M> OP<<(INT n)CO;TE<TY INT> CE Mod<M> OP>>(INT n)CO;CE Mod<M> OP-()CO NE;CE Mod<M>& SignInvert()NE;IN Mod<M>& Invert();TE <TY INT> CE Mod<M>& PW(INT EX);CE VO swap(Mod<M>& n)NE;CE CO uint& RP()CO NE;ST CE Mod<M> DeRP(CO uint& n)NE;ST IN CO Mod<M>& Inverse(CO uint& n);ST IN CO Mod<M>& Factorial(CO uint& n);ST IN CO Mod<M>& FactorialInverse(CO uint& n);ST IN Mod<M> Combination(CO uint& n,CO uint& i);ST IN CO Mod<M>& zero()NE;ST IN CO Mod<M>& one()NE;TE <TY INT> CE Mod<M>& PositivePW(INT EX)NE;TE <TY INT> CE Mod<M>& NonNegativePW(INT EX)NE;TE <TY T> CE Mod<M>& Ref(T&& n)NE;ST CE uint&Normalise(uint& n)NE;};US MP = Mod<P>;TE <uint M> CL Mod;TE <uint M>CL COantsForMod{PU:COantsForMod()= delete;ST CE CO uint g_memory_bound =#ifdef DEBUG1e3;#else1e6;#endifST CE CO uint g_memory_LE = M < g_memory_bound?M:g_memory_bound;ST CE uint g_M_minus = M - 1;ST CE uint g_M_minus_2 = M - 2;ST CE uintg_M_minus_2_neg = 2 - M;};TE <uint M> CE Mod<M>::Mod()NE:m_n(){}TE <uint M> CE Mod<M>::Mod(CO Mod<M>& n)NE:m_n(n.m_n){}TE <uint M> CE Mod<M>::Mod(Mod<M>&& n)NE:m_n(MO(n.m_n)){}TE <uint M> TE <TY T> CE Mod<M>::Mod(T n)NE:m_n(RS<M>(MO(n))){ST_AS(is_COructible_v<uint,decay_t<T> >);}TE <uint M> CE Mod<M>& Mod<M>::OP=(Mod<M> n)NE{RE Ref(m_n = MO(n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP+=(CO Mod<M>& n)NE{RE Ref(Normalise(m_n += n.m_n));}TE <uint M> CE Mod<M>& Mod<M>::OP-=(CO Mod<M>& n)NE{RE Ref(m_n < n.m_n?(m_n += M)-= n.m_n:m_n -= n.m_n);}TE <uint M> CE Mod<M>& Mod<M>::OP*=(CO Mod<M>& n)NE{RE Ref(m_n = RS<M>(ull(m_n)* n.m_n));}TE <> CE MP& MP::OP*=(CO MP& n)NE{ull m_n_copy = m_n;RE Ref(m_n = MO((m_n_copy *= n.m_n)< P?m_n_copy:RSP(m_n_copy)));}TE <uint M> IN Mod<M>& Mod<M>::OP/=(Mod<M> n){RE OP*=(n.Invert());}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP<<=(INT n){AS(n >= 0);RE *TH*= Mod<M>(2).NonNegativePW(MO(n));}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::OP>>=(INT n){AS(n >=0);WH(n-- > 0){((m_n & 1)== 0?m_n:m_n += M)>>=1;}RE *TH;}TE <uint M> CE Mod<M>& Mod<M>::OP++()NE{RE Ref(m_n < COantsForMod<M>::g_M_minus?++m_n:m_n = 0);}TE <uint M> CE Mod<M> Mod<M>::OP++(int)NE{Mod<M> n{*TH};OP++();RE n;}TE <uint M> CE Mod<M>& Mod<M>::OP--()NE{RE Ref(m_n == 0?m_n = COantsForMod<M>::g_M_minus:--m_n);}TE <uint M> CEMod<M> Mod<M>::OP--(int)NE{Mod<M> n{*TH};OP--();RE n;}DF_OF_CM_FOR_MOD(==);DF_OF_CM_FOR_MOD(!=);DF_OF_CM_FOR_MOD(>);DF_OF_CM_FOR_MOD(>=);DF_OF_CM_FOR_MOD(<);DF_OF_CM_FOR_MOD(<=);DF_OF_AR_FOR_MOD(+,NE,n,+);DF_OF_AR_FOR_MOD(-,NE,n.SignInvert(),+);DF_OF_AR_FOR_MOD(*,NE,n,*);DF_OF_AR_FOR_MOD(/,,n.Invert(),*);TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP^(INT EX)CO{RE MO(Mod<M>(*TH).PW(MO(EX)));}TE <uint M> TE <TYINT> CE Mod<M> Mod<M>::OP<<(INT n)CO{RE MO(Mod<M>(*TH)<<= MO(n));}TE <uint M> TE <TY INT> CE Mod<M> Mod<M>::OP>>(INT n)CO{RE MO(Mod<M>(*TH)>>= MO(n));}TE <uint M> CE Mod<M> Mod<M>::OP-()CO NE{RE MO(Mod<M>(*TH).SignInvert());}TE <uint M> CE Mod<M>& Mod<M>::SignInvert()NE{RE Ref(m_n > 0?m_n= M - m_n:m_n);}TE <uint M> IN Mod<M>& Mod<M>::Invert(){AS(m_n != 0);uint m_n_neg;RE m_n < COantsForMod<M>::g_memory_LE?Ref(m_n = Inverse(m_n).m_n):((m_n_neg = M - m_n)< COantsForMod<M>::g_memory_LE)?Ref(m_n = M - Inverse(m_n_neg).m_n):PositivePW(uint(COantsForMod<M>::g_M_minus_2));}TE<uint M> TE <TY INT> CE Mod<M>& Mod<M>::PositivePW(INT EX)NE{Mod<M> PW{*TH};EX--;WH(EX != 0){(EX & 1)== 1?*TH *= PW:*TH;EX >>= 1;PW *= PW;}RE *TH;}TE <uint M> TE <TY INT> CE Mod<M>& Mod<M>::NonNegativePW(INT EX)NE{RE EX == 0?Ref(m_n = 1):Ref(PositivePW(MO(EX)));}TE <uint M> TE <TY INT> CEMod<M>& Mod<M>::PW(INT EX){bool neg = EX < 0;AS(!(neg && m_n == 0));RE neg?PositivePW(MO(EX *= COantsForMod<M>::g_M_minus_2_neg)):NonNegativePW(MO(EX));}TE <uint M> CE VO Mod<M>::swap(Mod<M>& n)NE{std::swap(m_n,n.m_n);}TE <uint M> IN CO Mod<M>& Mod<M>::Inverse(CO uint& n){AS(n <COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={zero(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){memory[LE_curr].m_n = M - memory[M % LE_curr].m_n * ull(M / LE_curr)% M;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::Factorial(CO uint& n){AS(n <COantsForMod<M>::g_memory_LE);ST Mod<M> memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]=memory[LE_curr - 1])*= LE_curr;LE_curr++;}RE memory[n];}TE <uint M> IN CO Mod<M>& Mod<M>::FactorialInverse(CO uint& n){ST Mod<M>memory[COantsForMod<M>::g_memory_LE]={one(),one()};ST uint LE_curr = 2;WH(LE_curr <= n){(memory[LE_curr]= memory[LE_curr - 1])*= Inverse(LE_curr);LE_curr++;}RE memory[n];}TE <uint M> IN Mod<M> Mod<M>::Combination(CO uint& n,CO uint& i){RE i <= n?Factorial(n)* FactorialInverse(i)*FactorialInverse(n - i):zero();}TE <uint M> CE CO uint& Mod<M>::RP()CO NE{RE m_n;}TE <uint M> CE Mod<M> Mod<M>::DeRP(CO uint& n)NE{Mod<M>n_copy{};n_copy.m_n = n;RE n_copy;}TE <uint M> IN CO Mod<M>& Mod<M>::zero()NE{ST CE CO Mod<M> z{};RE z;}TE <uint M> IN CO Mod<M>& Mod<M>::one()NE{ST CE CO Mod<M> o{1};RE o;}TE <uint M> TE <TY T> CE Mod<M>& Mod<M>::Ref(T&& n)NE{RE *TH;}TE <uint M> CE uint& Mod<M>::Normalise(uint& n)NE{RE n < M?n:n -= M;}TE <uint M> IN Mod<M> Inverse(CO Mod<M>& n){RE MO(Mod<M>(n).Invert());}TE <uint M> CE Mod<M> Inverse_CE(Mod<M> n)NE{RE MO(n.NonNegativePW(M - 2));}TE <uint M,TY INT> CE Mod<M> PW(Mod<M> n,INT EX){RE MO(n.PW(MO(EX)));}TE <uint M> CE VO swap(Mod<M>& n0,Mod<M>& n1)NE{n0.swap(n1);}TE <uint M> IN string to_string(CO Mod<M>& n)NE{RE to_string(n.RP())+ " + " + to_string(M)+ "Z";}TE <uint M,CL Traits> INbasic_istream<char,Traits>& OP>>(basic_istream<char,Traits>& is,Mod<M>& n){ll m;is >> m;n = m;RE is;}TE <uint M,CL Traits> IN basic_ostream<char,Traits>& OP<<(basic_ostream<char,Traits>& os,CO Mod<M>& n){RE os << n.RP();}// AAA 常設ライブラリは以上に挿入する。#define INCLUDE_LIBRARY#include __FILE__#endif // INCLUDE_LIBRARY#endif // INCLUDE_SUB#endif // INCLUDE_MAIN