結果

問題 No.2679 MODice
ユーザー bortikbortik
提出日時 2024-03-20 21:10:12
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 6,549 bytes
コンパイル時間 3,948 ms
コンパイル使用メモリ 261,564 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-09-30 06:55:22
合計ジャッジ時間 4,626 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 2 ms
6,816 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 AC 2 ms
6,820 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 2 ms
6,820 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template<typename T>
bool chmax(T& a, const T& b) {
    bool res = a < b;
    a = max(a, b);
    return res;
}
template<typename T>
bool chmin(T& a, const T& b){
    bool res = a > b;
    a = min(a, b);
    return res;
}

typedef vector<long long> vl;
typedef pair<ll,ll> pll;
typedef vector<pair<ll, ll>> vll;
typedef vector<int> vi;
typedef vector<pair<int,int>> vii;
typedef pair<int,int> pii;

const int inf = 1000000009;
const ll linf = 4000000000000000009;


// https://trap.jp/post/1224/
template<class... T>
void input(T&... a){
    (cin >> ... >> a);
}

void print(){
    cout << '\n';
}
template<class T, class... Ts>
void print(const T& a, const Ts&... b){
    cout << a;
    (cout << ... << (cout << ' ', b));
    cout << '\n';
}

#define rep1(a)          for(int i = 0; i < a; i++)
#define rep2(i, a)       for(int i = 0; i < a; i++)
#define rep3(i, a, b)    for(int i = a; i < b; i++)
#define rep4(i, a, b, c) for(int i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)


#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
//---------------------------------

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

template <int m>
struct modint{

    using mint  = modint;

    public:

        static constexpr int mod() { return m; }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }

        modint() : _v(0) {}
        template<class T>
        modint(T v) {
            long long x = (long long)(v % (long long)(umod()));
            if(x < 0) x += umod();
            _v = (unsigned int)(x);
        }

        unsigned int val() const { return _v; }

        mint& operator--(){
            if(_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint& operator++(){
            _v++;
            if(_v == umod()) _v = 0;
            return *this;
        }
        mint& operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint& operator--(int){
            mint result = *this;
            --*this;
            return result;
        }
        mint& operator+=(const mint& rhs){
            _v += rhs._v;
            if(_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs){
            _v -= rhs._v;
            if(_v >= umod()) _v += umod();
            return *this;
        }
        mint& operator*=(const mint& rhs){
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int)(z % umod());
            return *this;
        }

        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }

        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }


    private:

        unsigned int _v;
        static constexpr unsigned int umod() { return m; }      
        static constexpr bool prime = is_prime<m>;
};
using modint998244353 = modint<998244353>;
using modint1000000007 = modint<1000000007>;

using mint = modint998244353;

void solve(){
    ll n,k; input(n, k);
    mint ans = (mint)1 / (mint)6;
    print(ans.val());
    
}


int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);

    int t = 1;
    //cin >> t;
    rep(i,0,t) solve();
}
0