結果
| 問題 |
No.2684 折々の色
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-03-20 22:13:22 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 515 ms / 2,000 ms |
| コード長 | 13,370 bytes |
| コンパイル時間 | 3,777 ms |
| コンパイル使用メモリ | 270,636 KB |
| 実行使用メモリ | 32,440 KB |
| 最終ジャッジ日時 | 2024-09-30 08:08:30 |
| 合計ジャッジ時間 | 18,946 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 56 |
ソースコード
// #pragma GCC optimize("O3,unroll-loops")
#include <bits/stdc++.h>
// #include <x86intrin.h>
using namespace std;
#if __cplusplus >= 202002L
using namespace numbers;
#endif
template<class data_t, data_t _mod>
struct modular_fixed_base{
#define IS_INTEGRAL(T) (is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>)
#define IS_UNSIGNED(T) (is_unsigned_v<T> || is_same_v<T, __uint128_t>)
static_assert(IS_UNSIGNED(data_t));
static_assert(_mod >= 1);
static constexpr bool VARIATE_MOD_FLAG = false;
static constexpr data_t mod(){
return _mod;
}
template<class T>
static vector<modular_fixed_base> precalc_power(T base, int SZ){
vector<modular_fixed_base> res(SZ + 1, 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
return res;
}
static vector<modular_fixed_base> _INV;
static void precalc_inverse(int SZ){
if(_INV.empty()) _INV.assign(2, 1);
for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
}
// _mod must be a prime
static modular_fixed_base _primitive_root;
static modular_fixed_base primitive_root(){
if(_primitive_root) return _primitive_root;
if(_mod == 2) return _primitive_root = 1;
if(_mod == 998244353) return _primitive_root = 3;
data_t divs[20] = {};
divs[0] = 2;
int cnt = 1;
data_t x = (_mod - 1) / 2;
while(x % 2 == 0) x /= 2;
for(auto i = 3; 1LL * i * i <= x; i += 2){
if(x % i == 0){
divs[cnt ++] = i;
while(x % i == 0) x /= i;
}
}
if(x > 1) divs[cnt ++] = x;
for(auto g = 2; ; ++ g){
bool ok = true;
for(auto i = 0; i < cnt; ++ i){
if(modular_fixed_base(g).power((_mod - 1) / divs[i]) == 1){
ok = false;
break;
}
}
if(ok) return _primitive_root = g;
}
}
constexpr modular_fixed_base(){ }
modular_fixed_base(const double &x){ data = _normalize(llround(x)); }
modular_fixed_base(const long double &x){ data = _normalize(llround(x)); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base(const T &x){ data = _normalize(x); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> static data_t _normalize(const T &x){
int sign = x >= 0 ? 1 : -1;
data_t v = _mod <= sign * x ? sign * x % _mod : sign * x;
if(sign == -1 && v) v = _mod - v;
return v;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> operator T() const{ return data; }
modular_fixed_base &operator+=(const modular_fixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
modular_fixed_base &operator-=(const modular_fixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator+=(const T &otr){ return *this += modular_fixed_base(otr); }
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr> modular_fixed_base &operator-=(const T &otr){ return *this -= modular_fixed_base(otr); }
modular_fixed_base &operator++(){ return *this += 1; }
modular_fixed_base &operator--(){ return *this += _mod - 1; }
modular_fixed_base operator++(int){ modular_fixed_base result(*this); *this += 1; return result; }
modular_fixed_base operator--(int){ modular_fixed_base result(*this); *this += _mod - 1; return result; }
modular_fixed_base operator-() const{ return modular_fixed_base(_mod - data); }
modular_fixed_base &operator*=(const modular_fixed_base &rhs){
if constexpr(is_same_v<data_t, unsigned int>) data = (unsigned long long)data * rhs.data % _mod;
else if constexpr(is_same_v<data_t, unsigned long long>){
long long res = data * rhs.data - _mod * (unsigned long long)(1.L / _mod * data * rhs.data);
data = res + _mod * (res < 0) - _mod * (res >= (long long)_mod);
}
else data = _normalize(data * rhs.data);
return *this;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base &inplace_power(T e){
if(e == 0) return *this = 1;
if(data == 0) return *this = {};
if(data == 1 || e == 1) return *this;
if(data == mod() - 1) return e % 2 ? *this : *this = -*this;
if(e < 0) *this = 1 / *this, e = -e;
if(e == 1) return *this;
modular_fixed_base res = 1;
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>
modular_fixed_base power(T e) const{
return modular_fixed_base(*this).inplace_power(e);
}
modular_fixed_base &operator/=(const modular_fixed_base &otr){
make_signed_t<data_t> a = otr.data, m = _mod, u = 0, v = 1;
if(a < _INV.size()) return *this *= _INV[a];
while(a){
make_signed_t<data_t> t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return *this *= u;
}
#define ARITHMETIC_OP(op, apply_op)\
modular_fixed_base operator op(const modular_fixed_base &x) const{ return modular_fixed_base(*this) apply_op x; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
modular_fixed_base operator op(const T &x) const{ return modular_fixed_base(*this) apply_op modular_fixed_base(x); }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend modular_fixed_base operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x) apply_op y; }
ARITHMETIC_OP(+, +=) ARITHMETIC_OP(-, -=) ARITHMETIC_OP(*, *=) ARITHMETIC_OP(/, /=)
#undef ARITHMETIC_OP
#define COMPARE_OP(op)\
bool operator op(const modular_fixed_base &x) const{ return data op x.data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
bool operator op(const T &x) const{ return data op modular_fixed_base(x).data; }\
template<class T, typename enable_if<IS_INTEGRAL(T)>::type* = nullptr>\
friend bool operator op(const T &x, const modular_fixed_base &y){ return modular_fixed_base(x).data op y.data; }
COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)
#undef COMPARE_OP
friend istream &operator>>(istream &in, modular_fixed_base &number){
long long x;
in >> x;
number.data = modular_fixed_base::_normalize(x);
return in;
}
//#define _SHOW_FRACTION
friend ostream &operator<<(ostream &out, const modular_fixed_base &number){
out << number.data;
#if defined(LOCAL) && defined(_SHOW_FRACTION)
cerr << "(";
for(auto d = 1; ; ++ d){
if((number * d).data <= 1000000){
cerr << (number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
else if((-number * d).data <= 1000000){
cerr << "-" << (-number * d).data;
if(d != 1) cerr << "/" << d;
break;
}
}
cerr << ")";
#endif
return out;
}
data_t data = 0;
#undef _SHOW_FRACTION
#undef IS_INTEGRAL
#undef IS_UNSIGNED
};
template<class data_t, data_t _mod> vector<modular_fixed_base<data_t, _mod>> modular_fixed_base<data_t, _mod>::_INV;
template<class data_t, data_t _mod> modular_fixed_base<data_t, _mod> modular_fixed_base<data_t, _mod>::_primitive_root;
const unsigned int mod = (119 << 23) + 1; // 998244353
// const unsigned int mod = 1e9 + 7; // 1000000007
// const unsigned int mod = 1e9 + 9; // 1000000009
// const unsigned long long mod = (unsigned long long)1e18 + 9;
using modular = modular_fixed_base<decay_t<decltype(mod)>, mod>;
// Requires modular
template<class modular_t, class len_t, bool ALLOW_BINEXP>
struct hash_base{
#ifdef LOCAL
#define ASSERT(c) assert(c)
#else
#define ASSERT(c) 42
#endif
static modular_t _base, _inv_base;
template<class T = int>
static void setup(T base = 0){
if constexpr(modular_t::VARIATE_MOD_FLAG) modular_t::setup((unsigned long long)1e18 + 9);
if(!base) base = mt19937_64(chrono::high_resolution_clock::now().time_since_epoch().count())() % (long long)1e17 + (long long)9e17;
_base = base, _inv_base = modular_t(1) / base;
}
static vector<modular_t> _power, _inv_power;
static void setup_power(size_t len){
if(_power.empty()) _power.push_back(1), _inv_power.push_back(1);
while((int)_power.size() <= len){
_power.push_back(_power.back() * _base);
_inv_power.push_back(_inv_power.back() * _inv_base);
}
}
static modular_t power(len_t e){
assert(e >= 0);
if constexpr(ALLOW_BINEXP) return e < (int)_power.size() ? _power[e] : _base.power(e);
else{
if((int)_power.size() <= e) setup_power(e);
return _power[e];
}
}
static modular_t inv_power(len_t e){
assert(e >= 0);
if constexpr(ALLOW_BINEXP) return e < (int)_inv_power.size() ? _inv_power[e] : _inv_base.power(e);
else{
if((int)_power.size() <= e) setup_power(e);
return _inv_power[e];
}
}
hash_base(){ ASSERT(_base >= 1); }
hash_base(const modular_t &x, len_t len): data(x), len(len){ ASSERT(_base >= 1); }
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base(T x): data(x), len(1){ ASSERT(_base >= 1); }
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base(const vector<T> &s){
ASSERT(_base >= 1);
for(auto c: s) *this += hash_base(c);
}
hash_base(const string &s){
ASSERT(_base >= 1);
for(auto c: s) *this += hash_base(c);
}
hash_base &operator=(const hash_base &x){
data = x.data, len = x.len;
return *this;
}
hash_base &operator+=(const hash_base &x){
data = power(x.len) * data + x.data;
len += x.len;
return *this;
}
hash_base operator+(const hash_base &x) const{ return hash_base(*this) += x; }
hash_base &inplace_append_right(const hash_base &x){ return *this += x; }
hash_base append_right(const hash_base &x) const{ return hash_base(*this).inplace_append_right(x); }
hash_base &inplace_append_left(const hash_base &x){
data += power(len) * x.data;
len += x.len;
return *this;
}
hash_base append_left(const hash_base &x) const{ return hash_base(*this).inplace_append_left(x); }
hash_base &inplace_pop_right(const hash_base &x){
assert(len >= x.len);
data = inv_power(x.len) * (data - x.data);
len -= x.len;
return *this;
}
hash_base pop_right(const hash_base &x) const{ return hash_base(*this).inplace_pop_right(x); }
hash_base &inplace_pop_left(const hash_base &x){
assert(len >= x.len);
data -= power(len - x.len) * x.data;
len -= x.len;
return *this;
}
hash_base pop_left(const hash_base &x) const{ return hash_base(*this).inplace_pop_left(x); }
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base &inplace_update(len_t pos, T x){
assert(0 <= pos && pos < len);
data += power(len - pos - 1) * x;
return *this;
}
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base update(len_t pos, T x) const{ return hash_base(*this).inplace_update(pos, x); }
hash_base &inplace_update(len_t pos, const hash_base &x){
assert(0 <= pos && pos + x.len <= len);
data += power(len - pos - x.len) * x.data;
return *this;
}
hash_base update(len_t pos, const hash_base &x) const{ return hash_base(*this).inplace_update(pos, x); }
#define COMPARE_OP(op)\
bool operator op(const hash_base &x) const{ return data op x.data; }
COMPARE_OP(==) COMPARE_OP(!=) COMPARE_OP(<) COMPARE_OP(<=) COMPARE_OP(>) COMPARE_OP(>=)
#undef COMPARE_OP
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base &operator*=(T x){
assert(x >= 0);
if(x == 0) return *this = {};
if(x == 1) return *this;
hash_base res{};
for(auto e = x; e; e >>= 1){
if(e & 1) res += *this;
*this += *this;
}
return *this = res;
}
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
hash_base operator*(T x) const{ return hash_base(*this) *= x; }
template<class T, typename enable_if<is_integral_v<T>>::type* = nullptr>
friend hash_base operator*(T x, const hash_base &h){ return hash_base(h) *= x; }
friend ostream &operator<<(ostream &out, const hash_base &x){ return out << "{" << x.data << ", " << x.len << "}"; }
modular_t data = 0;
len_t len = 0;
#undef ASSERT
};
template<class modular_t, class len_t, bool ALLOW_BINEXP> modular_t hash_base<modular_t, len_t, ALLOW_BINEXP>::_base;
template<class modular_t, class len_t, bool ALLOW_BINEXP> modular_t hash_base<modular_t, len_t, ALLOW_BINEXP>::_inv_base;
template<class modular_t, class len_t, bool ALLOW_BINEXP> vector<modular_t> hash_base<modular_t, len_t, ALLOW_BINEXP>::_power{1};
template<class modular_t, class len_t, bool ALLOW_BINEXP> vector<modular_t> hash_base<modular_t, len_t, ALLOW_BINEXP>::_inv_power{1};
using hash_t = hash_base<modular_fixed_base<unsigned long long, (unsigned long long)1e18 + 9>, int, false>;
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
hash_t::setup();
int n, m;
cin >> n >> m;
vector<long long> obj(m);
copy_n(istream_iterator<int>(cin), m, obj.begin());
vector card(n, vector<int>(m));
vector<int> opac(n);
vector<map<hash_t, int>> appear(101);
for(auto i = 0; i < n; ++ i){
copy_n(istream_iterator<int>(cin), m, card[i].begin());
cin >> opac[i];
++ appear[opac[i]][hash_t{card[i]}];
}
for(auto i = 0; i < n; ++ i){
hash_t cur{card[i]};
for(auto op = 1; op <= 100; ++ op){
hash_t x;
for(auto j = 0; j < m; ++ j){
int value = obj[j] * 100 * 100 - opac[i] * (100 - op) * card[i][j];
if(value % (100 * op)){
goto FAIL;
}
x += value / 100 / op;
}
if(appear[op][x] > (x == cur)){
cout << "Yes\n";
return 0;
}
FAIL:;
}
}
cout << "No\n";
return 0;
}
/*
*/