結果
| 問題 |
No.2711 Connecting Lights
|
| コンテスト | |
| ユーザー |
Nachia
|
| 提出日時 | 2024-03-31 13:59:07 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 5,000 ms |
| コード長 | 9,989 bytes |
| コンパイル時間 | 4,012 ms |
| コンパイル使用メモリ | 169,220 KB |
| 最終ジャッジ日時 | 2025-02-20 16:47:54 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#ifdef NACHIA
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <utility>
#include <queue>
#include <array>
#include <cmath>
#include <atcoder/modint>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
#define repr(i,n) for(int i=int(n)-1; i>=0; i--)
const i64 INF = 1001001001001001001;
const char* yn(bool x){ return x ? "Yes" : "No"; }
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
template<typename A> using nega_queue = std::priority_queue<A,std::vector<A>,std::greater<A>>;
using Modint = atcoder::static_modint<998244353>;
//#include "nachia/vec.hpp"
using namespace std;
// (edited) Nyaan's library
namespace nachia{
// output : denominator of rational gf
template <typename Modint>
std::vector<Modint> BerlekampMassey(const std::vector<Modint> &s){
const int N = (int)s.size();
std::vector<Modint> b, c;
b.reserve(N+1);
c.reserve(N+1);
const Modint Zero = Modint(0);
const Modint One = Modint(1);
b.push_back(One);
c.push_back(One);
Modint y = One;
for(int ed=1; ed<=N; ed++){
int l = int(c.size());
int m = int(b.size());
Modint x = Zero;
for(int i=0; i<l; i++) x += c[i] * s[ed-l+i];
b.push_back(Zero);
m++;
if(x.val() == 0) continue;
Modint freq = x / y;
if(l < m){
auto tmp = c;
c.insert(c.begin(), m-l, Zero);
for(int i=0; i<m; i++) c[i] -= freq * b[i];
std::swap(b, tmp); y = x;
} else {
for(int i=0; i<m; i++) c[l-m+i] -= freq * b[i];
}
}
std::reverse(c.begin(), c.end());
return c;
}
} // namespace nachia
#include <atcoder/convolution>
#include <cassert>
namespace nachia{
// ax + by = gcd(a,b)
// return ( x, - )
std::pair<long long, long long> ExtGcd(long long a, long long b){
long long x = 1, y = 0;
while(b){
long long u = a / b;
std::swap(a-=b*u, b);
std::swap(x-=y*u, y);
}
return std::make_pair(x, a);
}
} // namespace nachia
namespace nachia{
class DynamicModSupplier{
using u64 = unsigned long long;
using Int = unsigned int;
private:
u64 imod;
Int mod;
// atcoder library
u64 reduce2(u64 z) const noexcept {
// atcoder library
#ifdef _MSC_VER
u64 x; _umul128(z, im, &x);
#else
using u128 = unsigned __int128;
u64 x = (u64)(((u128)(z)*imod) >> 64);
#endif
return z - x * mod;
}
Int reduce(u64 z) const noexcept {
Int v = reduce2(z);
if(mod <= v) v += mod;
return v;
}
public:
DynamicModSupplier(unsigned int MOD = 998244353) : mod(MOD) {
assert(2 <= MOD);
assert(MOD < (1u << 31));
imod = (u64)(-1) / mod + 1;
}
Int add(Int a, Int b) const { a += b; if(a >= mod){ a -= mod; } return a; }
Int sub(Int a, Int b) const { a -= b; if(a >= mod){ a += mod; } return a; }
Int mul(Int a, Int b) const { return reduce((u64)a * b); }
Int muladd(Int a, Int b, Int c) const { return reduce((u64)a * b + c); }
Int inv(Int a) const {
Int v = ExtGcd(a, mod).first;
return (v < mod) ? v : (v + mod);
}
Int pow(Int a, u64 i) const {
Int r = a, ans = 1;
while(i){
if(i & 1) ans = mul(ans, r);
i /= 2;
r = mul(r, r);
}
return ans;
}
Int getMod() const { return mod; }
};
} // namespace nachia
namespace nachia{
template<class FinishType>
struct GarnerMod{
using Int = unsigned int;
using IntLong = unsigned long long;
std::vector<Int> mods;
std::vector<DynamicModSupplier> dynmods;
std::vector<std::vector<Int>> table_coeff;
std::vector<Int> table_coeffinv;
void precalc(std::vector<Int> new_mods){
mods = std::move(new_mods);
dynmods.resize(mods.size());
for(size_t i=0; i<mods.size(); i++) dynmods[i] = DynamicModSupplier(mods[i]);
int nmods = mods.size();
table_coeff.assign(nmods+1, std::vector<Int>(nmods, 1));
for(int j=0; j<nmods; j++){
for(int k=0; k<nmods; k++) table_coeff[j+1][k] = table_coeff[j][k];
for(int k=j+1; k<nmods; k++) table_coeff[j+1][k] = dynmods[k].mul(table_coeff[j+1][k], mods[j] % mods[k]);
}
table_coeffinv.resize(nmods);
for(int i=0; i<nmods; i++) table_coeffinv[i] = dynmods[i].inv(table_coeff[i][i]);
}
FinishType calc(const std::vector<Int>& x){
int nmods = mods.size();
std::vector<Int> table_const(nmods);
FinishType res = 0;
FinishType res_coeff = 1;
for(int j=0; j<nmods; j++){
Int t = dynmods[j].mul(dynmods[j].sub(x[j], table_const[j]), table_coeffinv[j]);
for(int k=j+1; k<nmods; k++){
table_const[k] = dynmods[k].muladd(t, table_coeff[j][k], table_const[k]);
}
res += res_coeff * FinishType(t);
res_coeff *= mods[j];
}
return res;
}
std::vector<FinishType> calc(std::vector<std::vector<Int>> x){
int n = x[0].size(), m = x.size();
std::vector<FinishType> res(n);
std::vector<Int> buf(m);
for(int i=0; i<n; i++){
for(int j=0; j<m; j++) buf[j] = x[j][i];
res[i] = calc(buf);
}
return res;
}
};
} // namespace nachia
namespace nachia{
template<class Modint, unsigned int nttmod> std::vector<unsigned int>
PartConvolution(std::vector<Modint> A, std::vector<Modint> B)
{
std::vector<atcoder::static_modint<nttmod>> AA(A.size());
for(std::size_t i=0; i<A.size(); i++) AA[i] = A[i].val();
std::vector<atcoder::static_modint<nttmod>> BB(B.size());
for(std::size_t i=0; i<B.size(); i++) BB[i] = B[i].val();
auto AB = atcoder::convolution(AA, BB);
std::vector<unsigned int> res(AB.size());
for(std::size_t i=0; i<AB.size(); i++) res[i] = AB[i].val();
return res;
}
template<class Modint>
std::vector<Modint> Convolution(std::vector<Modint> A, std::vector<Modint> B){
auto Q1 = PartConvolution<Modint, 998244353>(A, B);
auto Q2 = PartConvolution<Modint, 897581057>(A, B);
auto Q3 = PartConvolution<Modint, 880803841>(A, B);
GarnerMod<Modint> garner;
garner.precalc({ 998244353, 897581057, 880803841 });
return garner.calc({ Q1, Q2, Q3 });
}
} // namespace nachia
namespace nachia{
template<class Modint>
Modint KthTermOfRationalGF(
std::vector<Modint> denom,
std::vector<Modint> numer,
unsigned long long K
){
assert(denom.size() != 0);
assert(denom.size() == numer.size());
assert(denom[0].val() != 0);
int n = (int)denom.size();
while(K != 0){
auto Qn = denom;
Qn.push_back(Modint(0));
for(int i=1; i<n; i+=2) Qn[i] = -Qn[i];
int f = K % 2;
denom = Convolution(denom, Qn);
for(int i=0; i<n; i++) denom[i] = denom[i*2];
denom.resize(n);
numer = Convolution(numer, Qn);
for(int i=0; i<n; i++) numer[i] = numer[i*2+f];
numer.resize(n);
K /= 2;
}
return numer[0] / denom[0];
}
// divisor of fractional representation
// and first terms
template<class Modint>
Modint KthTermOfLinearRecurrence(
std::vector<Modint> denom,
std::vector<Modint> firstTerms,
unsigned long long K
){
assert(denom.size() <= firstTerms.size());
firstTerms.resize(denom.size());
auto numer = Convolution(firstTerms, denom);
numer.resize(denom.size());
return KthTermOfRationalGF(std::move(denom), std::move(numer), K);
}
} // namespace nachia
namespace nachia{
template<class Modint>
class Comb{
private:
std::vector<Modint> F;
std::vector<Modint> iF;
public:
void extend(int newN){
int prevN = (int)F.size() - 1;
if(prevN >= newN) return;
F.resize(newN+1);
iF.resize(newN+1);
for(int i=prevN+1; i<=newN; i++) F[i] = F[i-1] * Modint::raw(i);
iF[newN] = F[newN].inv();
for(int i=newN; i>prevN; i--) iF[i-1] = iF[i] * Modint::raw(i);
}
Comb(int n = 1){
F.assign(2, Modint(1));
iF.assign(2, Modint(1));
extend(n);
}
Modint factorial(int n) const { return F[n]; }
Modint invFactorial(int n) const { return iF[n]; }
Modint invOf(int n) const { return iF[n] * F[n-1]; }
Modint comb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[r] * iF[n-r];
}
Modint invComb(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[r] * F[n-r];
}
Modint perm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return F[n] * iF[n-r];
}
Modint invPerm(int n, int r) const {
if(n < 0 || n < r || r < 0) return Modint(0);
return iF[n] * F[n-r];
}
Modint operator()(int n, int r) const { return comb(n,r); }
};
} // namespace nachia
void testcase(){
int N,M,K; cin >> N >> M >> K;
if(M == 1){ cout << Modint(2).pow(N).val() << '\n'; return; }
auto comb = nachia::Comb<Modint>(N);
int Z = (N+1)*2+1;
vector<Modint> A(Z); {
vector<Modint> dp(N+1);
dp[N] = 1;
rep(z,Z){
vector<Modint> nx(N+1);
rep(i,N+1) rep(j,i+1) if(K<=j) rep(k,N-i+1){
nx[j+k] += comb(i,j) * comb(N-i,k) * dp[i];
}
swap(dp, nx);
rep(i,N+1) A[z] += dp[i];
}
}
auto rec = nachia::BerlekampMassey(A);
auto ans = nachia::KthTermOfLinearRecurrence(rec, A, M-1);
cout << ans.val() << '\n';
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
#ifdef NACHIA
int T; cin >> T; for(int t=0; t<T; T!=++t?(cout<<'\n'),0:0)
#endif
testcase();
return 0;
}
Nachia