結果
問題 | No.375 立方体のN等分 (1) |
ユーザー |
![]() |
提出日時 | 2016-06-07 11:14:53 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 5 ms / 5,000 ms |
コード長 | 2,215 bytes |
コンパイル時間 | 265 ms |
コンパイル使用メモリ | 24,832 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-11 21:05:19 |
合計ジャッジ時間 | 1,289 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:100:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 100 | scanf("%lld", &n); | ~~~~~^~~~~~~~~~~~
ソースコード
#include <stdio.h>typedef long long int LL;LL n, factor[12], expo[12], length;void factorize() {LL m = n;for(LL i = 2; i * i <= m; i++) {if(m % i == 0) {factor[length] = i;while(m % i == 0) {m /= i;expo[length]++;}length++;}}if(m != 1) {factor[length] = m;expo[length]++;length++;}return;}int size() {int ans = 1;for(int i = 0; i < length; i++) { ans *= expo[i] + 1; }return ans;}LL val(int v) {LL ans = 1;for(int i = 0; i < length; i++) {for(int j = 0; j < v % (expo[i] + 1); j++) {ans *= factor[i];} v /= (expo[i] + 1);}return ans;}void sort(LL* p, LL* q, int l, int r) {if(r - l < 2) { return; }int m = (l + r) / 2;sort(p, q, l, m);sort(p, q, m, r);int ll = l, rr = m, c = l;while(ll < m || rr < r) {bool flag;if(ll == m) { flag = false; }else if(rr == r) { flag = true; }else { flag = (p[ll] <= p[rr]); }if(flag) { q[c++] = p[ll++]; }else { q[c++] = p[rr++]; }}for(c = l; c < r; c++) { p[c] = q[c]; }return;}LL sqrt(LL x) {LL min = 0, max = 10000000;while(max - min > 1) {LL mid = (max + min) / 2;if(mid * mid <= x) { min = mid; } else { max = mid; }}return min;}LL cbrt(LL x) {LL min = 0, max = 100000;while(max - min > 1) {LL mid = (max + min) / 2;if(mid * mid * mid <= x) { min = mid; } else { max = mid; }}return min;}int find(LL* p, int s, LL x) {int min = 0, max = s;while(max - min > 1) {int mid = (max + min) / 2;if(p[mid] <= x) { min = mid; } else { max = mid; }}return min;}int main() {scanf("%lld", &n);factorize();int s = size();LL* p = new LL[s];LL* q = new LL[s];for(int i = 0; i < s; i++) {p[i] = val(i);}sort(p, q, 0, s);delete[] q;int cr = find(p, s, cbrt(n));LL min = p[cr] + n / p[cr] + 1;for(int i = cr; 0 <= i && p[i] + 2 * sqrt(n / p[i]) < min; i--) {for(int j = find(p, s, sqrt(n / p[i])); 0 <= j && p[i] + p[j] + n / p[i] / p[j] < min; j--) {if(n / p[i] % p[j] == 0) {LL k = p[i] + p[j] + n / p[i] / p[j];if(k < min) { min = k; }}}}printf("%lld %lld\n", min - 3, n - 1);return 0;}