結果

問題 No.2713 Just Solitaire
ユーザー 👑 emthrmemthrm
提出日時 2024-03-31 14:49:36
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 4,973 bytes
コンパイル時間 2,881 ms
コンパイル使用メモリ 264,488 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-09-30 19:59:53
合計ジャッジ時間 3,794 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <template <typename> class C, typename T>
concept MaximumFlow = requires (C<T> mf) {
{mf.add_edge(std::declval<int>(), std::declval<int>(), std::declval<T>())}
-> std::same_as<void>;
{mf.maximum_flow(std::declval<int>(), std::declval<int>())}
-> std::same_as<T>;
};
template <typename T>
struct Dinic {
struct Edge {
int dst, rev;
T cap;
explicit Edge(const int dst, const T cap, const int rev)
: dst(dst), rev(rev), cap(cap) {}
};
std::vector<std::vector<Edge>> graph;
explicit Dinic(const int n) : graph(n), level(n), itr(n) {}
void add_edge(const int src, const int dst, const T cap) {
graph[src].emplace_back(dst, cap, graph[dst].size());
graph[dst].emplace_back(src, 0, graph[src].size() - 1);
}
T maximum_flow(const int s, const int t,
T limit = std::numeric_limits<T>::max()) {
T res = 0;
while (limit > 0) {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
std::queue<int> que;
que.emplace(s);
while (!que.empty()) {
const int ver = que.front();
que.pop();
for (const Edge& e : graph[ver]) {
if (level[e.dst] == -1 && e.cap > 0) {
level[e.dst] = level[ver] + 1;
que.emplace(e.dst);
}
}
}
if (level[t] == -1) break;
std::fill(itr.begin(), itr.end(), 0);
while (limit > 0) {
const T f = dfs(s, t, limit);
if (f == 0) break;
limit -= f;
res += f;
}
}
return res;
}
private:
std::vector<int> level, itr;
T dfs(const int ver, const int t, const T flow) {
if (ver == t) return flow;
for (; std::cmp_less(itr[ver], graph[ver].size()); ++itr[ver]) {
Edge& e = graph[ver][itr[ver]];
if (level[ver] < level[e.dst] && e.cap > 0) {
const T tmp = dfs(e.dst, t, std::min(flow, e.cap));
if (tmp > 0) {
e.cap -= tmp;
graph[e.dst][e.rev].cap += tmp;
return tmp;
}
}
}
return 0;
}
};
template <template <typename> class C, typename T>
requires MaximumFlow<C, T>
struct ProjectSelectionProblem {
explicit ProjectSelectionProblem(const int n)
: inf(std::numeric_limits<T>::max()), n(n), res(0) {}
void add_neq(const int u, const int v, const T cost) {
assert(cost >= 0);
us.emplace_back(u);
vs.emplace_back(v);
costs.emplace_back(cost);
}
void add(const int v, bool group, T cost) {
if (cost < 0) {
cost = -cost;
res += cost;
group = !group;
}
if (group) {
add_neq(-2, v, cost); // -2 represents S.
} else {
add_neq(v, -1, cost); // -1 represents T.
}
}
void add_or(const std::vector<int>& v, const bool group, const T cost) {
assert(cost >= 0);
add(n, group, cost);
if (group) {
for (const int e : v) add_neq(n, e, inf);
} else {
for (const int e : v) add_neq(e, n, inf);
}
++n;
}
void add_or(const int u, const int v, const bool group, const T cost) {
add_or({u, v}, group, cost);
}
void add_eq(const std::vector<int>& v, const bool group, T cost) {
assert(cost <= 0);
cost = -cost;
res += cost;
add_or(v, !group, cost);
}
void add_eq(const int u, const int v, const bool group, const T cost) {
add_eq({u, v}, group, cost);
}
T solve() {
C<T> mf(n + 2);
const int neq_size = costs.size();
for (int i = 0; i < neq_size; ++i) {
mf.add_edge(us[i] < 0 ? us[i] + n + 2 : us[i],
vs[i] < 0 ? vs[i] + n + 2 : vs[i], costs[i]);
}
return mf.maximum_flow(n, n + 1, inf) - res;
}
private:
const T inf;
int n;
T res;
std::vector<int> us, vs;
std::vector<T> costs;
};
int main() {
int n, m; cin >> n >> m;
ProjectSelectionProblem<Dinic, ll> psp(n);
REP(i, n) {
int a; cin >> a;
psp.add(i, true, a);
}
vector<int> b(m);
for (int& b_i : b) cin >> b_i;
REP(i, m) {
int k; cin >> k;
vector<int> c(k);
for (int& c_i : c) cin >> c_i, --c_i;
psp.add_eq(c, true, -b[i]);
}
cout << -psp.solve() << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0