結果
| 問題 |
No.2712 Play more!
|
| コンテスト | |
| ユーザー |
rurun
|
| 提出日時 | 2024-03-31 15:28:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,495 bytes |
| コンパイル時間 | 3,077 ms |
| コンパイル使用メモリ | 198,600 KB |
| 最終ジャッジ日時 | 2025-02-20 17:55:28 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 11 WA * 22 |
コンパイルメッセージ
graph/shortest-path/bellman-ford.hpp: In function ‘int main()’:
graph/shortest-path/bellman-ford.hpp:38:19: warning: narrowing conversion of ‘a’ from ‘lint’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
graph/shortest-path/bellman-ford.hpp:38:22: warning: narrowing conversion of ‘b’ from ‘lint’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
graph/shortest-path/bellman-ford.hpp:38:25: warning: narrowing conversion of ‘-(A.std::vector<long long int>::operator[](((std::vector<long long int>::size_type)a)) - c)’ from ‘__gnu_cxx::__alloc_traits<std::allocator<long long int>, long long int>::value_type’ {aka ‘long long int’} to ‘int’ [-Wnarrowing]
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
#line 2 "graph/shortest-path/bellman-ford.hpp"
#line 2 "graph/graph-template.hpp"
/**
* @brief Graph Template(グラフテンプレート)
*/
template< typename T = int >
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template< typename T = int >
struct Graph {
vector< vector< Edge< T > > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const {
return g.size();
}
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
for(int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if(weighted) cin >> c;
if(directed) add_directed_edge(a, b, c);
else add_edge(a, b, c);
}
}
inline vector< Edge< T > > &operator[](const int &k) {
return g[k];
}
inline const vector< Edge< T > > &operator[](const int &k) const {
return g[k];
}
};
template< typename T = int >
using Edges = vector< Edge< T > >;
#line 4 "graph/shortest-path/bellman-ford.hpp"
/**
* @brief Bellman-Ford(単一始点最短路)
* @docs docs/bellman-ford.md
*/
template< typename T >
vector< T > bellman_ford(const Edges< T > &edges, int V, int s) {
const auto INF = numeric_limits< T >::max();
vector< T > dist(V, INF);
dist[s] = 0;
for(int i = 0; i < V - 1; i++) {
for(auto &e : edges) {
if(dist[e.from] == INF) continue;
dist[e.to] = min(dist[e.to], dist[e.from] + e.cost);
}
}
for(auto &e : edges) {
if(dist[e.from] == INF) continue;
if(dist[e.from] + e.cost < dist[e.to]) return vector< T >();
}
return dist;
}
int main() {
int n, m;
cin >> n >> m;
vector<lint> A(n);
Edges< > es;
for (int i = 0; i < n; i++) cin >> A[i];
for (int i = 0; i < m; i++) {
lint a, b, c;
cin >> a >> b >> c;
a--, b--;
es.push_back({a, b, -(A[a]-c)});
}
auto dists = bellman_ford(es, n, 0);
if(dists.empty()) cout << "inf" << endl;
else cout << -dists[n-1]+A[n-1] << endl;
}
rurun