結果
| 問題 | No.2713 Just Solitaire | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2024-04-07 14:40:12 | 
| 言語 | PyPy3 (7.3.15) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 94 ms / 2,000 ms | 
| コード長 | 4,012 bytes | 
| コンパイル時間 | 244 ms | 
| コンパイル使用メモリ | 82,464 KB | 
| 実行使用メモリ | 78,336 KB | 
| 最終ジャッジ日時 | 2024-10-01 04:30:24 | 
| 合計ジャッジ時間 | 3,605 ms | 
| ジャッジサーバーID (参考情報) | judge3 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 2 | 
| other | AC * 32 | 
ソースコード
from collections import deque
# from dataclasses import dataclass
class mf_graph:
    # @dataclass
    class edge:
        # from_: int
        # to: int
        # cap: int
        # flow: int
        def __init__(self, from_, to, cap, flow):
            self.from_ = from_
            self.to = to
            self.cap = cap
            self.flow = flow
    # @dataclass
    class _edge:
        # to: int
        # rev: int
        # cap: int
        def __init__(self, to, rev, cap):
            self.to = to
            self.rev = rev
            self.cap = cap
    def __init__(self, n):
        self.n = n
        self.G = [[] for _ in range(n)]
        self.pos = []
    def add_edge(self, from_, to, cap):
        m = len(self.pos)
        self.pos.append((from_, len(self.G[from_])))
        from_id = len(self.G[from_])
        to_id = len(self.G[to])
        if from_ == to:
            to_id += 1
        self.G[from_].append(mf_graph._edge(to, to_id, cap))
        self.G[to].append(mf_graph._edge(from_, from_id, 0))
        return m
    def get_edge(self, i):
        _e = self.G[self.pos[i][0]][self.pos[i][1]]
        _re = self.G[_e.to][_e.rev]
        return mf_graph.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap)
    def edges(self):
        m = len(self.pos)
        result = []
        for i in range(m):
            result.append(self.get_edge(i))
        return result
    def change_edge(self, i, new_cap, new_flow):
        _e = self.G[self.pos[i][0]][self.pos[i][1]]
        self.G[_e.to][_e.rev].cap = new_flow
        self.G[self.pos[i][0]][self.pos[i][1]].cap = new_cap - new_flow
    def flow(self, s, t, flow_limit=1 << 60):
        level = []
        iter = []
        que = deque()
        def bfs():
            nonlocal level
            level = [-1] * self.n
            level[s] = 0
            que.clear()
            que.append(s)
            while que:
                v = que.popleft()
                for e in self.G[v]:
                    if e.cap == 0 or level[e.to] >= 0:
                        continue
                    level[e.to] = level[v] + 1
                    if e.to == t:
                        return
                    que.append(e.to)
        def dfs(v, up):
            if v == s:
                return up
            nonlocal level, iter
            res = 0
            level_v = level[v]
            while iter[v] < len(self.G[v]):
                i = iter[v]
                iter[v] += 1
                e = self.G[v][i]
                if level_v <= level[e.to] or self.G[e.to][e.rev].cap == 0:
                    continue
                d = dfs(e.to, min(up - res, self.G[e.to][e.rev].cap))
                if d <= 0:
                    continue
                self.G[v][i].cap += d
                self.G[e.to][e.rev].cap -= d
                res += d
                if res == up:
                    return res
            level[v] = self.n
            return res
        flow = 0
        while flow < flow_limit:
            bfs()
            if level[t] == -1:
                break
            iter = [0] * self.n
            f = dfs(t, flow_limit - flow)
            if f == 0:
                break
            flow += f
        return flow
    def min_cut(self, s):
        visited = [False] * self.n
        que = deque()
        que.append(s)
        while que:
            p = que.popleft()
            visited[p] = True
            for e in self.G[p]:
                if e.cap and not visited[e.to]:
                    visited[e.to] = True
                    que.append(e.to)
        return visited
n, m = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
ans = sum(B)
G = mf_graph(n + m + 2)
s = n + m
t = n + m + 1
for i in range(n):
    G.add_edge(s, i, A[i])
for i in range(m):
    G.add_edge(n + i, t, B[i])
    k, *C = map(int, input().split())
    for c in C:
        G.add_edge(c - 1, n + i, 1 << 60)
print(ans - G.flow(s, t))
            
            
            
        