結果

問題 No.1868 Teleporting Cyanmond
ユーザー 草苺奶昔草苺奶昔
提出日時 2024-04-10 22:35:09
言語 Go
(1.22.1)
結果
AC  
実行時間 179 ms / 2,000 ms
コード長 9,718 bytes
コンパイル時間 10,459 ms
コンパイル使用メモリ 223,092 KB
実行使用メモリ 55,168 KB
最終ジャッジ日時 2024-10-02 21:02:48
合計ジャッジ時間 14,048 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 179 ms
55,168 KB
testcase_04 AC 126 ms
41,600 KB
testcase_05 AC 6 ms
5,248 KB
testcase_06 AC 25 ms
10,112 KB
testcase_07 AC 77 ms
26,880 KB
testcase_08 AC 47 ms
17,536 KB
testcase_09 AC 67 ms
23,040 KB
testcase_10 AC 158 ms
48,256 KB
testcase_11 AC 3 ms
5,248 KB
testcase_12 AC 35 ms
13,568 KB
testcase_13 AC 60 ms
19,200 KB
testcase_14 AC 137 ms
37,504 KB
testcase_15 AC 91 ms
25,600 KB
testcase_16 AC 14 ms
6,272 KB
testcase_17 AC 25 ms
9,344 KB
testcase_18 AC 112 ms
28,672 KB
testcase_19 AC 105 ms
28,544 KB
testcase_20 AC 106 ms
28,544 KB
testcase_21 AC 112 ms
29,824 KB
testcase_22 AC 109 ms
29,824 KB
testcase_23 AC 102 ms
26,112 KB
testcase_24 AC 105 ms
25,728 KB
testcase_25 AC 97 ms
25,600 KB
testcase_26 AC 96 ms
26,112 KB
testcase_27 AC 91 ms
25,472 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// RangeToRangeGraph (区间图)
// !原图的连通分量/最短路在新图上仍然等价
// 线段树优化建图

package main

import (
	"bufio"
	"fmt"
	"os"
)

const INF int = 1e18

func main() {
	// CF786B()
	yuki1868()
}

// https://www.luogu.com.cn/problem/CF786B
func CF786B() {
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n, q, start int32
	fmt.Fscan(in, &n, &q, &start)
	start--
	G := NewRangeToRangeGraph(n, 0)
	newGraph := make([][]neighbor, G.Size())
	G.Init(func(from, to int32) { newGraph[from] = append(newGraph[from], neighbor{to, 0}) })
	for i := int32(0); i < q; i++ {
		var op int32
		fmt.Fscan(in, &op)
		if op == 1 {
			var from, to int32
			var weight int
			fmt.Fscan(in, &from, &to, &weight)
			from--
			to--
			G.Add(from, to, func(from, to int32) {
				newGraph[from] = append(newGraph[from], neighbor{to, weight})
			})
		} else if op == 2 {
			var from, l, r int32
			var weight int
			fmt.Fscan(in, &from, &l, &r, &weight)
			from--
			l--
			G.AddToRange(from, l, r, func(from, to int32) {
				newGraph[from] = append(newGraph[from], neighbor{to, weight})
			})
		} else if op == 3 {
			var to, l, r int32
			var weight int
			fmt.Fscan(in, &to, &l, &r, &weight)
			to--
			l--
			G.AddFromRange(l, r, to, func(from, to int32) {
				newGraph[from] = append(newGraph[from], neighbor{to, weight})
			})
		}
	}

	res := DijkstraInt32(int32(len(newGraph)), newGraph, start)
	for i := int32(0); i < n; i++ {
		fmt.Fprint(out, res[i], " ")
	}
}

func yuki1868() {
	// https://yukicoder.me/problems/no/1868
	// !给定一张有向图,每个点i可以向右达到i+1,i+2,...,targets[i]。求从0到n-1的最短路。
	// 解法1:每个点i连接targets[i],边权为1,所有i到i-1连边,边权为0。然后跑最短路。(前后缀优化建图)
	// 解法2:RangeToRangeGraph。每个点i连接i+1,i+2,...,targets[i]。然后跑最短路。
	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n int32
	fmt.Fscan(in, &n)
	targets := make([]int32, n-1) // !从i可以到 i+1, i+2, ..., targets[i]
	for i := range targets {
		fmt.Fscan(in, &targets[i])
		targets[i]-- // [0,n-1]内
	}

	R := NewRangeToRangeGraph(n, 0)
	adjList := make([][]neighbor, R.Size())
	R.Init(func(from, to int32) {
		adjList[from] = append(adjList[from], neighbor{to, 0})
	})
	for i := int32(0); i < n-1; i++ {
		R.AddToRange(i, i+1, targets[i]+1, func(from, to int32) {
			adjList[from] = append(adjList[from], neighbor{to, 1})
		})
	}

	dist, queue := make([]int, int32(len(adjList))), NewDeque(int32(len(adjList)))
	for i := range dist {
		dist[i] = INF
	}
	dist[0] = 0
	queue.Append(0)
	for queue.Size() > 0 {
		cur := queue.PopLeft()
		nexts := adjList[cur]
		for i := 0; i < len(nexts); i++ {
			e := &nexts[i]
			next, weight := e.to, e.weight
			cand := dist[cur] + weight
			if cand < dist[next] {
				dist[next] = cand
				if weight == 0 {
					queue.AppendLeft(next)
				} else {
					queue.Append(next)
				}
			}
		}
	}

	fmt.Fprintln(out, dist[n-1])
}

func jump(nums []int) int {
	// 45. 跳跃游戏 II
	// https://leetcode.cn/problems/jump-game-ii/
	n := int32(len(nums))
	G := NewRangeToRangeGraph(int32(n), 0)
	adjList := make([][]neighbor, G.Size())
	G.Init(func(from, to int32) { adjList[from] = append(adjList[from], neighbor{to, 0}) })
	for i := int32(0); i < n; i++ {
		G.AddToRange(i, i+1, min32(i+1+int32(nums[i]), n), func(from, to int32) {
			adjList[from] = append(adjList[from], neighbor{to, 1})
		})
	}

	bfs := func(start int32, adjList [][]neighbor) []int32 {
		n := len(adjList)
		dist := make([]int32, n)
		for i := 0; i < n; i++ {
			dist[i] = 1e9
		}
		dist[start] = 0
		queue := []int32{start}
		for len(queue) > 0 {
			cur := queue[0]
			queue = queue[1:]
			nexts := adjList[cur]
			for i := 0; i < len(nexts); i++ {
				e := &nexts[i]
				next, weight := e.to, e.weight
				cand := dist[cur] + int32(weight)
				if cand < dist[next] {
					dist[next] = cand
					queue = append(queue, next)
				}
			}
		}
		return dist
	}
	dist := bfs(0, adjList)
	return int(dist[n-1])
}

type RangeToRangeGraph struct {
	n        int32
	maxSize  int32
	allocPtr int32
}

// 新建一个区间图,n 为原图的节点数,rangeToRangeOpCount 为区间到区间的最大操作次数.
// 最后得到的新图的节点数为 n*3 + rangeToRangeOpCount,前n个节点为原图的节点。
func NewRangeToRangeGraph(n int32, rangeToRangeOpCount int32) *RangeToRangeGraph {
	g := &RangeToRangeGraph{
		n:        n,
		maxSize:  n*3 + rangeToRangeOpCount,
		allocPtr: n * 3,
	}
	return g
}

func (g *RangeToRangeGraph) Init(f func(from, to int32)) {
	n := g.n
	for i := int32(2); i < n+n; i++ {
		f(g.toUpperIdx(i>>1), g.toUpperIdx(i))
		f(g.toLowerIdx(i), g.toLowerIdx(i>>1))
	}
}

// 添加有向边 from -> to.
func (g *RangeToRangeGraph) Add(from, to int32, f func(from, to int32)) {
	f(from, to)
}

// 从区间 [fromStart, fromEnd) 中的每个点到 to 都添加一条有向边.
func (g *RangeToRangeGraph) AddFromRange(fromStart, fromEnd, to int32, f func(from, to int32)) {
	l, r := fromStart+g.n, fromEnd+g.n
	for l < r {
		if l&1 == 1 {
			f(g.toLowerIdx(l), to)
			l++
		}
		if r&1 == 1 {
			r--
			f(g.toLowerIdx(r), to)
		}
		l >>= 1
		r >>= 1
	}
}

// 从 from 到区间 [toStart, toEnd) 中的每个点都添加一条有向边.
func (g *RangeToRangeGraph) AddToRange(from, toStart, toEnd int32, f func(from, to int32)) {
	l, r := toStart+g.n, toEnd+g.n
	for l < r {
		if l&1 == 1 {
			f(from, g.toUpperIdx(l))
			l++
		}
		if r&1 == 1 {
			r--
			f(from, g.toUpperIdx(r))
		}
		l >>= 1
		r >>= 1
	}
}

// 从区间 [fromStart, fromEnd) 中的每个点到区间 [toStart, toEnd) 中的每个点都添加一条有向边.
func (g *RangeToRangeGraph) AddRangeToRange(fromStart, fromEnd, toStart, toEnd int32, f func(from, to int32)) {
	newNode := g.allocPtr
	g.allocPtr++
	g.AddFromRange(fromStart, fromEnd, newNode, f)
	g.AddToRange(newNode, toStart, toEnd, f)
}

// 新图的结点数.
func (g *RangeToRangeGraph) Size() int32 { return g.maxSize }

func (g *RangeToRangeGraph) toUpperIdx(i int32) int32 {
	if i >= g.n {
		return i - g.n
	}
	return g.n + i
}

func (g *RangeToRangeGraph) toLowerIdx(i int32) int32 {
	if i >= g.n {
		return i - g.n
	}
	return g.n + g.n + i
}

type D = int32
type Deque struct{ l, r []D }

func NewDeque(cap int32) *Deque { return &Deque{make([]D, 0, 1+cap/2), make([]D, 0, 1+cap/2)} }

func (q Deque) Empty() bool {
	return len(q.l) == 0 && len(q.r) == 0
}

func (q Deque) Size() int {
	return len(q.l) + len(q.r)
}

func (q *Deque) AppendLeft(v D) {
	q.l = append(q.l, v)
}

func (q *Deque) Append(v D) {
	q.r = append(q.r, v)
}

func (q *Deque) PopLeft() (v D) {
	if len(q.l) > 0 {
		q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
	} else {
		v, q.r = q.r[0], q.r[1:]
	}
	return
}

func (q *Deque) Pop() (v D) {
	if len(q.r) > 0 {
		q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
	} else {
		v, q.l = q.l[0], q.l[1:]
	}
	return
}

func (q Deque) Front() D {
	if len(q.l) > 0 {
		return q.l[len(q.l)-1]
	}
	return q.r[0]
}

func (q Deque) Back() D {
	if len(q.r) > 0 {
		return q.r[len(q.r)-1]
	}
	return q.l[0]
}

// 0 <= i < q.Size()
func (q Deque) At(i int) D {
	if i < len(q.l) {
		return q.l[len(q.l)-1-i]
	}
	return q.r[i-len(q.l)]
}

type neighbor struct {
	to     int32
	weight int
}

// 如果不存在则返回 -1.
func DijkstraInt32(n int32, graph [][]neighbor, start int32) []int {
	pq := NewHeap(func(a, b H) bool { return a.dist < b.dist }, []H{{0, start}})
	dist := make([]int, n)
	for i := range dist {
		dist[i] = INF
	}
	dist[start] = 0
	for pq.Len() > 0 {
		cur := pq.Pop()
		curDist, curNode := cur.dist, cur.node
		if curDist > dist[curNode] {
			continue
		}
		nexts := graph[curNode]
		for i := 0; i < len(nexts); i++ {
			e := &nexts[i]
			next, weight := e.to, e.weight
			if tmp := curDist + weight; tmp < dist[next] {
				dist[next] = tmp
				pq.Push(H{tmp, next})
			}

		}
	}
	for i := range dist {
		if dist[i] == INF {
			dist[i] = -1
		}
	}
	return dist
}

type H = struct {
	dist int
	node int32
}

func NewHeap(less func(a, b H) bool, nums []H) *Heap {
	nums = append(nums[:0:0], nums...)
	heap := &Heap{less: less, data: nums}
	heap.heapify()
	return heap
}

type Heap struct {
	data []H
	less func(a, b H) bool
}

func (h *Heap) Push(value H) {
	h.data = append(h.data, value)
	h.pushUp(h.Len() - 1)
}

func (h *Heap) Pop() (value H) {
	if h.Len() == 0 {
		panic("heap is empty")
	}
	value = h.data[0]
	h.data[0] = h.data[h.Len()-1]
	h.data = h.data[:h.Len()-1]
	h.pushDown(0)
	return
}

func (h *Heap) Top() (value H) {
	value = h.data[0]
	return
}

func (h *Heap) Len() int { return len(h.data) }

func (h *Heap) heapify() {
	n := h.Len()
	for i := (n >> 1) - 1; i > -1; i-- {
		h.pushDown(i)
	}
}

func (h *Heap) pushUp(root int) {
	for parent := (root - 1) >> 1; parent >= 0 && h.less(h.data[root], h.data[parent]); parent = (root - 1) >> 1 {
		h.data[root], h.data[parent] = h.data[parent], h.data[root]
		root = parent
	}
}

func (h *Heap) pushDown(root int) {
	n := h.Len()
	for left := (root<<1 + 1); left < n; left = (root<<1 + 1) {
		right := left + 1
		minIndex := root
		if h.less(h.data[left], h.data[minIndex]) {
			minIndex = left
		}
		if right < n && h.less(h.data[right], h.data[minIndex]) {
			minIndex = right
		}
		if minIndex == root {
			return
		}
		h.data[root], h.data[minIndex] = h.data[minIndex], h.data[root]
		root = minIndex
	}
}
func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

func min32(a, b int32) int32 {
	if a < b {
		return a
	}
	return b
}

func max32(a, b int32) int32 {
	if a > b {
		return a
	}
	return b
}
0