結果

問題 No.8053 2.5 色で色塗り
ユーザー ecotteaecottea
提出日時 2024-04-14 15:26:59
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 563 ms / 2,000 ms
コード長 11,578 bytes
コンパイル時間 8,260 ms
コンパイル使用メモリ 351,444 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-03 15:06:51
合計ジャッジ時間 10,246 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 93 ms
6,816 KB
testcase_09 AC 139 ms
6,816 KB
testcase_10 AC 104 ms
6,820 KB
testcase_11 AC 434 ms
6,816 KB
testcase_12 AC 563 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// QCFium 法
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")


#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
int DX[4] = {1, 0, -1, 0}; // 4 近傍(下,右,上,左)
int DY[4] = {0, 1, 0, -1};
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i >= 0; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#endif


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
*	N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint bin_inv(int n, int r) : O(1)
*	二項係数の逆数 1/nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*
* mint hom(int n, int r) : O(1)
*	重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
*
* mint neg_bin(int n, int r) : O(1)
*	負の二項係数 nCr = (-1)^r -n+r-1Cr を返す(n ≦ 0, r ≧ 0)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://judge.yosupo.jp/problem/binomial_coefficient_prime_mod

		assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 二項係数の逆数 1/nCr を返す.
	mint bin_inv(int n, int r) const {
		// verify : https://www.codechef.com/problems/RANDCOLORING

		assert(n <= n_max);
		assert(r >= 0 || n - r >= 0);
		return fac_inv[n] * fac[r] * fac[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}

	// 重複組合せの数 nHr = n+r-1Cr を返す(0H0 = 1 とする)
	mint hom(int n, int r) {
		// verify : https://mojacoder.app/users/riantkb/problems/toj_ex_2

		if (n == 0) return (int)(r == 0);
		assert(n + r - 1 <= n_max);
		if (r < 0 || n - 1 < 0) return 0;
		return fac[n + r - 1] * fac_inv[r] * fac_inv[n - 1];
	}

	// 負の二項係数 nCr を返す(n ≦ 0, r ≧ 0)
	mint neg_bin(int n, int r) {
		// verify : https://atcoder.jp/contests/abc345/tasks/abc345_g

		if (n == 0) return (int)(r == 0);
		assert(-n + r - 1 <= n_max);
		if (r < 0 || -n - 1 < 0) return 0;
		return (r & 1 ? -1 : 1) * fac[-n + r - 1] * fac_inv[r] * fac_inv[-n - 1];
	}
};


//【ラグランジュ補間(一点評価)】O(n)
/*
* 各 i∈[0..n) について f(a i + b) = y[i] を満たす n-1 次多項式 f についての f(c) を返す.
*
* 制約:fm は n! まで計算可能
*/
mint lagrange_interpolation(int a, int b, const vm& y, mint c, const Factorial_mint& fm) {
	// 参考 : https://37zigen.com/lagrange-interpolation/
	// verify : https://atcoder.jp/contests/arc033/tasks/arc033_4

	//【方法】
	// ラグランジュ基底関数を
	//		f_i(x) = Πj≠i (x - x[j])/(x[i] - x[j]) (x[i] = a i + b)
	// と定めると,
	//		f(c) = Σi=[0..n) y[i] f_i(c)
	// と表される.
	//
	// 基底関数 f_i(x) の評価値 f_i(c) の分子については,左右からの累積積
	//		acc_l[i] = (c - x[0])(c - x[1]) ... (c - x[i - 1])
	//		acc_r[i] = (c - x[i + 1]) ... (c - x[n - 2])(c - x[n - 1])
	// を前計算しておけば計算できる.
	//
	// 分母については x[i] = a i + b であったことを思い出すと
	//		x[i] - x[j] = (a i + b) - (a j + b) = a (i - j)
	// となるので,
	//		Πj≠i a (i - j) = a^(n-1) (-1)^(n-1-i) i! (n-1-i)!
	// と計算できる.

	int n = sz(y);

	// acc_l[i] = (c - x[0])(c - x[1]) ... (c - x[i - 1])
	vm acc_l(n);
	acc_l[0] = 1;
	repi(i, 1, n - 1) acc_l[i] = acc_l[i - 1] * (c - (mint(a) * (i - 1) - b));

	// acc_r[i] = (c - x[i + 1]) ... (c - x[n - 2])(c - x[n - 1])
	vm acc_r(n);
	acc_r[n - 1] = 1;
	repir(i, n - 2, 0) acc_r[i] = (c - (mint(a) * (i + 1) - b)) * acc_r[i + 1];

	// ラグランジュ基底の線形結合を計算する.
	mint res = 0;
	rep(i, n) {
		res += y[i] * acc_l[i] * acc_r[i] * ((n - 1 - i) & 1 ? -1 : 1)
			* fm.fact_inv(i) * fm.fact_inv(n - 1 - i);
	}
	return res * mint(a).pow(n - 1);
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n, m;
	cin >> n >> m;

	// c[k] : k 色で塗る場合の数
	int K = n + m + 1;

	Factorial_mint fm(K);
	
	// __int128 を使って剰余の回数を減らさないと TLE した.

	vector<__int128> pow_n(K), pow_m(K);
	rep(k, K) {
		pow_n[k] = mint(k).pow(n).val();
		pow_m[k] = mint(k).pow(m).val();
	}
	dump(pow_n); dump(pow_m);

	// l[i] : 左側 n 点を固定された i 色をすべて使って塗る場合の数
	vector<__int128> l(K);
	rep(i, K) {
		repir(j, i, 1) {
			l[i] += ((i - j) % 2 ? -1 : 1) * (__int128)fm.bin(i, j).val() * pow_n[j];
		}
		l[i] %= (ll)1e9 + 7;
	}
	dump(l);

	vector<__int128> C(K);
	rep(k, K) {
		// i : 左側 n 点を塗るのに使う色の数
		repi(i, 1, k) {
			C[k] += l[i] * pow_m[k - i] * (__int128)fm.bin(k, i).val();
		}
	}
	dump(C);

	vm c(K);
	rep(k, K) c[k] = C[k];
	
	cout << lagrange_interpolation(1, 0, c, mint(5) / 2, fm) << endl;
}
0