結果
| 問題 | No.2744 Power! or +1 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-04-20 14:10:23 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 477 ms / 3,000 ms |
| コード長 | 3,651 bytes |
| コンパイル時間 | 159 ms |
| コンパイル使用メモリ | 82,308 KB |
| 実行使用メモリ | 91,940 KB |
| 最終ジャッジ日時 | 2024-10-12 09:41:40 |
| 合計ジャッジ時間 | 3,310 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 9 |
ソースコード
from math import gcd
from heapq import *
def MillerRabin(n):
if n <= 1:
return False
elif n == 2:
return True
elif n % 2 == 0:
return False
if n < 4759123141:
A = [2, 7, 61]
else:
A = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]
s = 0
d = n - 1
while d % 2 == 0:
s += 1
d >>= 1
for a in A:
if a % n == 0:
return True
x = pow(a, d, n)
if x != 1:
for t in range(s):
if x == n - 1:
break
x = x * x % n
else:
return False
return True
def pollard(n):
# https://qiita.com/t_fuki/items/7cd50de54d3c5d063b4a
if n % 2 == 0:
return 2
m = int(n**0.125) + 1
step = 0
while 1:
step += 1
def f(x):
return (x * x + step) % n
y = k = 0
g = q = r = 1
while g == 1:
x = y
while k < 3 * r // 4:
y = f(y)
k += 1
while k < r and g == 1:
ys = y
for _ in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
k = r
r <<= 1
if g == n:
g = 1
y = ys
while g == 1:
y = f(y)
g = gcd(abs(x - y), n)
if g == n:
continue
if MillerRabin(g):
return g
elif MillerRabin(n // g):
return n // g
else:
return pollard(g)
def primefact(n):
res = []
while n > 1 and not MillerRabin(n):
p = pollard(n)
while n % p == 0:
res.append(p)
n //= p
if n != 1:
res.append(n)
return sorted(res)
def primedict(n):
P = primefact(n)
ret = {}
for p in P:
ret[p] = ret.get(p, 0) + 1
return ret
n, a, b, c = map(int, input().split())
x = 1
fact = [1, 1]
m = 400200
while fact[-1] < m:
x += 1
fact.append(fact[-1] * x)
if m % n == 0:
m += 1
inf = 1 << 60
dist = [inf] * (m + 2)
dist[2] = a
for i in range(2, m + 1):
dist[i + 1] = min(dist[i + 1], dist[i] + a)
if i < x:
dist[fact[i]] = min(dist[fact[i]], dist[i] + c)
else:
dist[m + 1] = min(dist[m + 1], dist[i] + c)
cost = b
nex = i
while nex * i <= m:
nex *= i
cost *= b
dist[nex] = min(dist[nex], dist[i] + cost)
cost *= b
dist[m + 1] = min(dist[m + 1], dist[i] + cost)
ans = 1 << 60
for i in range(n, m + 2, n):
ans = min(ans, dist[i])
ps = primedict(n)
def ok(x):
for k, v in ps.items():
tot = 0
y = x
while y > 0:
y //= k
tot += y
if tot >= v:
break
if tot < v:
return False
return True
l = 1
r = n
while r - l > 1:
mid = (l + r) // 2
if ok(mid):
r = mid
else:
l = mid
ans = min(ans, min(dist[r:]) + c)
dist = [inf] * n
dist[1] = 0
hq = [1]
while hq:
tmp = heappop(hq)
d = tmp // n
pos = tmp - d * n
if dist[pos] < d:
continue
npos = (pos + 1) % n
nd = d + a
if dist[npos] > nd:
dist[npos] = nd
heappush(hq, nd * n + npos)
npos = pos
cc = b
while cc * b < 400200:
cc *= b
npos = npos * pos % n
nd = d + cc
if dist[npos] > nd:
dist[npos] = nd
heappush(hq, nd * n + npos)
ans = min(ans, dist[0])
print(ans)