結果

問題 No.2744 Power! or +1
ユーザー noya2noya2
提出日時 2024-04-21 05:55:28
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 568 ms / 3,000 ms
コード長 15,092 bytes
コンパイル時間 3,619 ms
コンパイル使用メモリ 268,928 KB
実行使用メモリ 190,744 KB
最終ジャッジ日時 2024-10-13 04:29:25
合計ジャッジ時間 6,050 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 568 ms
190,744 KB
testcase_01 AC 42 ms
29,488 KB
testcase_02 AC 9 ms
7,208 KB
testcase_03 AC 19 ms
10,948 KB
testcase_04 AC 43 ms
20,784 KB
testcase_05 AC 391 ms
162,544 KB
testcase_06 AC 167 ms
78,020 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 132 ms
55,500 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;

#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
    os << p.first << " " << p.second;
    return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
    is >> p.first >> p.second;
    return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
    for (auto &x : v) is >> x;
    return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
    cin >> t;
    in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}

template<typename T>
void out(const vector<vector<T>> &vv){
    int s = (int)vv.size();
    for (int i = 0; i < s; i++) out(vv[i]);
}

struct IoSetup {
    IoSetup(){
        cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(7);
    }
} iosetup_noya2;

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{

const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 =  998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"
namespace noya2{

unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
    if (a == 0 || b == 0) return a + b;
    int n = __builtin_ctzll(a); a >>= n;
    int m = __builtin_ctzll(b); b >>= m;
    while (a != b) {
        int mm = __builtin_ctzll(a - b);
        bool f = a > b;
        unsigned long long c = f ? a : b;
        b = f ? b : a;
        a = (c - b) >> mm;
    }
    return a << min(n, m);
}

template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(abs(a),abs(b))); }

long long sqrt_fast(long long n) {
    if (n <= 0) return 0;
    long long x = sqrt(n);
    while ((x + 1) * (x + 1) <= n) x++;
    while (x * x > n) x--;
    return x;
}

template<typename T> T floor_div(const T n, const T d) {
    assert(d != 0);
    return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}

template<typename T> T ceil_div(const T n, const T d) {
    assert(d != 0);
    return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}

template<typename T> void uniq(vector<T> &v){
    sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
}

template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }

template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }

template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }

} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"

#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;

namespace noya2{

/* ~ (. _________ . /) */

}

using namespace noya2;


#line 2 "c.cpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"
#include<ranges>
#line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"

namespace noya2::internal {

template<class E>
struct csr final {
    csr () {}
    csr (int _n) : n(_n) {}
    csr (int _n, int m) : n(_n){
        start.reserve(m);
        elist.reserve(m);
    }
    // ACL style constructor (do not have to call build)
    csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) {
        for (auto &[i, e] : idx_elem){
            start[i + 2]++;
        }
        for (int i = 1; i < n; i++){
            start[i + 2] += start[i + 1];
        }
        for (auto &[i, e] : idx_elem){
            elist[start[i + 1]++] = e;
        }
        prepared = true;
    }
    int add(int idx, E elem){
        int eid = start.size();
        start.emplace_back(idx);
        elist.emplace_back(elem);
        return eid;
    }
    void build(){
        if (prepared) return ;
        int m = start.size();
        std::vector<E> nelist(m);
        std::vector<int> nstart(n + 2, 0);
        for (int i = 0; i < m; i++){
            nstart[start[i] + 2]++;
        }
        for (int i = 1; i < n; i++){
            nstart[i + 2] += nstart[i + 1];
        }
        for (int i = 0; i < m; i++){
            nelist[nstart[start[i] + 1]++] = elist[i];
        }
        swap(elist,nelist);
        swap(start,nstart);
        prepared = true;
    }
    const auto operator[](int idx) const {
        return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
    }
    auto operator[](int idx){
        return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
    }
    const auto operator()(int idx, int l, int r) const {
        return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
    }
    auto operator()(int idx, int l, int r){
        return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
    }
    int n;
    std::vector<int> start;
    std::vector<E> elist;
    bool prepared = false;
};

} // namespace noya2::internal
#line 5 "/Users/noya2/Desktop/Noya2_library/graph/graph_query.hpp"

namespace noya2 {

template<typename Cost>
struct Graph {
    int n, m;
    internal::csr<pair<int,Cost>> g;
    Cost dist_inf = numeric_limits<Cost>::max() / 2;
    Graph (int n_ = 0) : n(n_), m(-1), g(n_) {}
    Graph (int n_, int m_) : n(n_), m(m_), g(n_,m_) {}
    // 有向辺を追加 (無向辺ではないことに注意!)
    int add_edge(int u, int v, Cost cost = 1){
        int id = g.add(u,pair<int,Cost>(v,cost));
        if (id == m-1) build();
        return id;
    }
    void build(){
        g.build();
    }
    void set_inf(Cost new_inf){
        dist_inf = new_inf;
    }
    vector<Cost> dijkstra(int s){
        vector<Cost> dist(n,dist_inf);
        dist[s] = 0;
        using P = pair<Cost,int>;
        priority_queue<P,vector<P>,greater<P>> pque;
        pque.push(P(0,s));
        while (!pque.empty()){
            auto [d, v] = pque.top(); pque.pop();
            if (dist[v] < d) continue;
            for (auto [u, c] : g[v]){
                if (chmin(dist[u],d+c)){
                    pque.push(P(dist[u],u));
                }
            }
        }
        return dist;
    }
    vector<int> reconstruct(int s, int t, const vector<Cost> &dist){
        if (dist[t] == dist_inf) return {};
        vector<int> from(n,-1);
        queue<int> que;
        que.push(s);
        while (!que.empty()){
            int v = que.front(); que.pop();
            for (auto [u, c] : g[v]){
                if (from[u] == -1 && dist[u] == dist[v] + c){
                    from[u] = v;
                    que.push(u);
                }
            }
        }
        vector<int> ans = {t};
        while (t != s){
            t = from[t];
            ans.emplace_back(t);
        }
        reverse(all(ans));
        return ans;
    }
    vector<Cost> bfs01(int s){
        vector<Cost> dist(n,dist_inf);
        dist[s] = 0;
        deque<int> que;
        que.push_back(s);
        while (!que.empty()){
            int v = que.front(); que.pop_front();
            for (auto [u, c] : g[v]){
                if (chmin(dist[u],dist[v]+c)){
                    if (c == 0) que.push_front(u);
                    else que.push_back(u);
                }
            }
        }
        return dist;
    }
    vector<Cost> bfs1(int s){
        vector<Cost> dist(n,dist_inf);
        dist[s] = 0;
        queue<int> que;
        que.push(s);
        while (!que.empty()){
            int v = que.front(); que.pop();
            for (auto [u, c] : g[v]){
                if (chmin(dist[u],dist[v]+c)){
                    que.push(u);
                }
            }
        }
        return dist;
    }
    vector<Cost> bellman_ford(int s, bool &ng_cycle){
        vector<Cost> dist(n,dist_inf);
        vector<int> ng;
        dist[s] = 0;
        int tm = 0;
        while (tm < n){
            bool finish = true;
            for (int v = 0; v < n; v++){
                if (dist[v] == dist_inf) continue;
                for (auto [u, c] : g[v]){
                    if (chmin(dist[u],dist[v]+c)){
                        finish = false;
                        if (tm == n-1) ng.emplace_back(u);
                    }
                }
            }
            if (finish) break;
            tm++;
        }
        ng_cycle = (tm == n);
        if (ng_cycle){
            for (auto v : ng) dist[v] = -dist_inf;
            tm = n;
            while (tm--){
                for (int v = 0; v < n; v++){
                    if (dist[v] != -dist_inf) continue;
                    for (auto [u, c] : g[v]){
                        dist[u] = -dist_inf;
                    }
                }
            }
        }
        return dist;
    }
    vector<vector<Cost>> warshall_floyd(){
        vector<vector<Cost>> dist(n,vector<Cost>(n,dist_inf));
        rep(v,n){
            dist[v][v] = 0;
            for (auto [u, c] : g[v]){
                chmin(dist[v][u],c);
            }
        }
        rep(k,n) rep(i,n) rep(j,n){
            chmin(dist[i][j],dist[i][k]+dist[k][j]);
        }
        return dist;
    }
    const auto operator[](int idx) const { return g[idx]; }
    auto operator[](int idx) { return g[idx]; }
};

} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

namespace noya2 {

constexpr ll safe_mod(ll x, ll m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

constexpr ll pow_mod_constexpr(ll x, ll n, int m) {
    if (m == 1) return 0;
    uint _m = (uint)(m);
    ull r = 1;
    ull y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    ll d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr ll bases[3] = {2, 7, 61};
    for (ll a : bases) {
        ll t = d;
        ll y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; 
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (ll)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m);

} // namespace noya2
#line 5 "c.cpp"

void solve(){
    ll n; in(n);
    ll a, b, c; in(a,b,c);
    vector<ll> fact(n,1);
    vector<bool> big(n,false);
    rep(i,n-1){
        fact[i+1] = fact[i] * (i+1) % n;
        if (big[i]){
            big[i+1] = true;
        }
        else {
            if (fact[i] * (i+1) >= n){
                big[i+1] = true;
            }
        }
    }
    vector<bool> isprime(60,false);
    rep(i,60) if (is_prime_constexpr(i)) isprime[i] = true;
    Graph<ll> g(n*2);
    g.add_edge(0,n,0);
    for (ll x = 1; x < n; x++){
        g.add_edge(x, x+1, a);
        ll y = x*x%n, cost = b*b, xp = (x*x >= n ? -1 : x*x);
        int p = 2;
        while (cost <= a*n){
            if (isprime[p]){
                if (xp == -1){
                    g.add_edge(x, n + y, cost);
                }
                else {
                    g.add_edge(x, y, cost);
                    xp *= x;
                    if (xp >= n){
                        xp = -1;
                    }
                }
            }
            else {
                if (xp != -1){
                    xp *= x;
                    if (xp >= n){
                        xp = -1;
                    }
                }
            }
            y = y*x%n;
            cost *= b;
            p++;
        }
        g.add_edge(x,fact[x] + (big[x] ? n : 0),c);
    }
    for (ll x = n+1; x < 2*n; x++){
        g.add_edge(x, x == 2*n-1 ? n : x+1, a);
        ll y = x*x%n, cost = b*b;
        int p = 2;
        while (cost <= a*n){
            if (isprime[p]){
                g.add_edge(x,n+y,cost);
            }
            y = y*x%n;
            cost *= b;
            p++;
        }
        g.add_edge(x,n,c);
    }
    g.build();
    out(g.dijkstra(1)[n]);
}

int main(){
    int t = 1; //in(t);
    while (t--) { solve(); }
}
0