結果
問題 | No.1254 補強への架け橋 |
ユーザー | 草苺奶昔 |
提出日時 | 2024-05-01 18:00:41 |
言語 | Go (1.22.1) |
結果 |
AC
|
実行時間 | 142 ms / 2,000 ms |
コード長 | 16,250 bytes |
コンパイル時間 | 14,295 ms |
コンパイル使用メモリ | 220,188 KB |
実行使用メモリ | 15,616 KB |
最終ジャッジ日時 | 2024-11-21 23:37:31 |
合計ジャッジ時間 | 27,745 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 1 ms
5,248 KB |
testcase_10 | AC | 1 ms
5,248 KB |
testcase_11 | AC | 1 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 1 ms
5,248 KB |
testcase_15 | AC | 1 ms
5,248 KB |
testcase_16 | AC | 1 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
testcase_20 | AC | 1 ms
5,248 KB |
testcase_21 | AC | 1 ms
5,248 KB |
testcase_22 | AC | 1 ms
5,248 KB |
testcase_23 | AC | 1 ms
5,248 KB |
testcase_24 | AC | 1 ms
5,248 KB |
testcase_25 | AC | 1 ms
5,248 KB |
testcase_26 | AC | 1 ms
5,248 KB |
testcase_27 | AC | 1 ms
5,248 KB |
testcase_28 | AC | 1 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 1 ms
5,248 KB |
testcase_31 | AC | 1 ms
5,248 KB |
testcase_32 | AC | 1 ms
5,248 KB |
testcase_33 | AC | 1 ms
5,248 KB |
testcase_34 | AC | 1 ms
5,248 KB |
testcase_35 | AC | 1 ms
5,248 KB |
testcase_36 | AC | 1 ms
5,248 KB |
testcase_37 | AC | 1 ms
5,248 KB |
testcase_38 | AC | 1 ms
5,248 KB |
testcase_39 | AC | 1 ms
5,248 KB |
testcase_40 | AC | 1 ms
5,248 KB |
testcase_41 | AC | 1 ms
5,248 KB |
testcase_42 | AC | 2 ms
5,248 KB |
testcase_43 | AC | 2 ms
5,248 KB |
testcase_44 | AC | 1 ms
5,248 KB |
testcase_45 | AC | 1 ms
5,248 KB |
testcase_46 | AC | 2 ms
5,248 KB |
testcase_47 | AC | 2 ms
5,248 KB |
testcase_48 | AC | 2 ms
5,248 KB |
testcase_49 | AC | 1 ms
5,248 KB |
testcase_50 | AC | 2 ms
5,248 KB |
testcase_51 | AC | 2 ms
5,248 KB |
testcase_52 | AC | 2 ms
5,248 KB |
testcase_53 | AC | 2 ms
5,248 KB |
testcase_54 | AC | 2 ms
5,248 KB |
testcase_55 | AC | 2 ms
5,248 KB |
testcase_56 | AC | 1 ms
5,248 KB |
testcase_57 | AC | 2 ms
5,248 KB |
testcase_58 | AC | 2 ms
5,248 KB |
testcase_59 | AC | 1 ms
5,248 KB |
testcase_60 | AC | 2 ms
5,248 KB |
testcase_61 | AC | 2 ms
5,248 KB |
testcase_62 | AC | 2 ms
5,248 KB |
testcase_63 | AC | 12 ms
5,248 KB |
testcase_64 | AC | 4 ms
5,248 KB |
testcase_65 | AC | 8 ms
5,248 KB |
testcase_66 | AC | 7 ms
5,248 KB |
testcase_67 | AC | 3 ms
5,248 KB |
testcase_68 | AC | 7 ms
5,248 KB |
testcase_69 | AC | 9 ms
5,248 KB |
testcase_70 | AC | 5 ms
5,248 KB |
testcase_71 | AC | 3 ms
5,248 KB |
testcase_72 | AC | 10 ms
5,248 KB |
testcase_73 | AC | 5 ms
5,248 KB |
testcase_74 | AC | 9 ms
5,248 KB |
testcase_75 | AC | 6 ms
5,248 KB |
testcase_76 | AC | 2 ms
5,248 KB |
testcase_77 | AC | 6 ms
5,248 KB |
testcase_78 | AC | 11 ms
5,248 KB |
testcase_79 | AC | 11 ms
5,248 KB |
testcase_80 | AC | 9 ms
5,248 KB |
testcase_81 | AC | 12 ms
5,248 KB |
testcase_82 | AC | 11 ms
5,248 KB |
testcase_83 | AC | 120 ms
11,904 KB |
testcase_84 | AC | 113 ms
11,520 KB |
testcase_85 | AC | 71 ms
7,936 KB |
testcase_86 | AC | 98 ms
10,368 KB |
testcase_87 | AC | 107 ms
11,008 KB |
testcase_88 | AC | 17 ms
5,248 KB |
testcase_89 | AC | 117 ms
11,904 KB |
testcase_90 | AC | 76 ms
8,320 KB |
testcase_91 | AC | 58 ms
7,040 KB |
testcase_92 | AC | 31 ms
5,248 KB |
testcase_93 | AC | 99 ms
9,984 KB |
testcase_94 | AC | 87 ms
9,216 KB |
testcase_95 | AC | 85 ms
8,832 KB |
testcase_96 | AC | 110 ms
11,264 KB |
testcase_97 | AC | 50 ms
6,656 KB |
testcase_98 | AC | 110 ms
11,392 KB |
testcase_99 | AC | 67 ms
7,680 KB |
testcase_100 | AC | 118 ms
11,520 KB |
testcase_101 | AC | 28 ms
5,248 KB |
testcase_102 | AC | 15 ms
5,248 KB |
testcase_103 | AC | 31 ms
5,248 KB |
testcase_104 | AC | 43 ms
6,272 KB |
testcase_105 | AC | 93 ms
9,472 KB |
testcase_106 | AC | 55 ms
6,656 KB |
testcase_107 | AC | 117 ms
11,904 KB |
testcase_108 | AC | 116 ms
11,648 KB |
testcase_109 | AC | 92 ms
9,856 KB |
testcase_110 | AC | 84 ms
9,088 KB |
testcase_111 | AC | 90 ms
9,344 KB |
testcase_112 | AC | 41 ms
5,888 KB |
testcase_113 | AC | 81 ms
8,832 KB |
testcase_114 | AC | 53 ms
6,656 KB |
testcase_115 | AC | 18 ms
5,248 KB |
testcase_116 | AC | 62 ms
7,168 KB |
testcase_117 | AC | 40 ms
6,016 KB |
testcase_118 | AC | 110 ms
11,264 KB |
testcase_119 | AC | 68 ms
7,552 KB |
testcase_120 | AC | 108 ms
10,496 KB |
testcase_121 | AC | 35 ms
5,248 KB |
testcase_122 | AC | 60 ms
7,040 KB |
testcase_123 | AC | 1 ms
5,248 KB |
testcase_124 | AC | 142 ms
15,616 KB |
testcase_125 | AC | 142 ms
15,488 KB |
ソースコード
// https://maspypy.github.io/library/graph/unicyclic.hpp // !Namori Graph 无向图基环树 // !一个有 n 个顶点和 n 条边的“连通”无向图。图中只有一个环。 // 这个图被称为“Namori图”,这是根据一位漫画家的名字而命名的, // 但在学术界中,正确的称呼是“单环图(Unicyclic)”或“伪森林(Pseudoforest)”。 // 例如:下图是一个无向基环树,其中的边权都是1。 // // 0 // | // 1 // / \ // 2 3 - 4 - 5 // \ / // 6 // // root: 3 // outEdge: 3-6 // to: [1 3 1 6 3 4 2] // cycle: [6 2 1 3] (bottom到root的路径) // directedGraph: // // 3(root) // / \ // 1 4 // / \ \ // 0 2 5 // \ // 6(bottom) // // !性质1:点u在所在子树的根节点(在环上)为lca(u, bottom). // // !这种维护方法的优势是支持动态修改点权或者边权 package main import ( "bufio" "fmt" "os" ) func main() { yuki1254() // abc266f() // namoriCut() } // https://yukicoder.me/problems/no/1254 // 找基环树中的环上的边. func yuki1254() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int32 fmt.Fscan(in, &n) edges := make([]edge, n) for i := int32(0); i < n; i++ { var u, v int32 fmt.Fscan(in, &u, &v) u-- v-- edges[i] = edge{u: u, v: v, w: 1} } namori := NewNamoriGraph(n, edges) res := []int32{} for i, e := range edges { if namori.InCycle[e.u] && namori.InCycle[e.v] { res = append(res, int32(i+1)) } } fmt.Fprintln(out, len(res)) for _, v := range res { fmt.Fprint(out, v, " ") } } // https://atcoder.jp/contests/abc266/tasks/abc266_f // 每次查询基环树中两个点是否由唯一的路径相连. // 等价于:所在子树的根节点是否相同. func abc266f() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int32 fmt.Fscan(in, &n) edges := make([]edge, n) for i := int32(0); i < n; i++ { var u, v int32 fmt.Fscan(in, &u, &v) u-- v-- edges[i] = edge{u, v, 1} } var q int32 fmt.Fscan(in, &q) queries := make([][2]int32, q) for i := int32(0); i < q; i++ { var u, v int32 fmt.Fscan(in, &u, &v) u-- v-- queries[i] = [2]int32{u, v} } namori := NewNamoriGraph(n, edges) _, tree := namori.BuildTree() root := namori.Root bottom := namori.To[root] for _, q := range queries { u, v := q[0], q[1] lca1, lca2 := tree.LCA(u, bottom), tree.LCA(v, bottom) if lca1 == lca2 { fmt.Fprintln(out, "Yes") } else { fmt.Fprintln(out, "No") } } } func namoriCut() { // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2891 // 给定一个基环树 q个询问(x,y) // 求使得x和y不连通最少需要切掉多少条边 // 如果两个点都在环上,则答案为2 // 否则答案为1(两点之间只有唯一的一条路径) in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int32 fmt.Fscan(in, &n) edges := make([]edge, n) for i := int32(0); i < n; i++ { var a, b int32 fmt.Fscan(in, &a, &b) a, b = a-1, b-1 edges[i] = edge{a, b, 1} } G := NewNamoriGraph(n, edges) _, tree := G.BuildTree() root := G.Root bottom := G.To[root] var q int32 fmt.Fscan(in, &q) for i := int32(0); i < q; i++ { var x, y int32 fmt.Fscan(in, &x, &y) x, y = x-1, y-1 lca1, lca2 := tree.LCA(x, bottom), tree.LCA(y, bottom) if lca1 == lca2 { fmt.Fprintln(out, 1) } else { fmt.Fprintln(out, 2) } } } func demo() { edges := []edge{ {0, 1, 1}, {1, 2, 2}, {1, 3, 3}, {2, 6, 6}, {3, 6, 6}, {3, 4, 4}, {4, 5, 5}, } namori := NewNamoriGraph(7, edges) fmt.Println(namori.Root) fmt.Println(namori.OutEdgeId) fmt.Println(namori.OutCost) fmt.Println(namori.To) fmt.Println(namori.Cycle) directedGraph, tree := namori.BuildTree() fmt.Println(directedGraph) fmt.Println(namori.Dist(tree, 0, 5)) } type edge = struct { u, v int32 w int } type neighbor = struct { to, eid int32 weight int } // !无向基环树. type NamoriGraph struct { RawEdges []edge RawGraph [][]neighbor N int32 Root int32 // 断开outEdge后有向树的根 OutEdgeId int32 // build后不在树中的边 OutCost int To []int32 // !向Root方向移动1步后的结点,Root的To为对应outEdge的另一端 Cycle []int32 InCycle []bool } func NewNamoriGraph(n int32, edges []edge) *NamoriGraph { m := int32(len(edges)) if m != n { panic("invalid namori graph") } graph := make([][]neighbor, n) for eid := int32(0); eid < m; eid++ { e := &edges[eid] u, v, w := e.u, e.v, e.w graph[u] = append(graph[u], neighbor{to: v, weight: w, eid: eid}) graph[v] = append(graph[v], neighbor{to: u, weight: w, eid: eid}) } uf := newUnionFindArraySimple32(n) to := make([]int32, n) for i := range to { to[i] = -1 } root := int32(-1) outEdgeId, outCost := int32(-1), -1 for eid := int32(0); eid < m; eid++ { e := &edges[eid] u, v, w := e.u, e.v, e.w if uf.Union(u, v) { continue } outEdgeId, outCost = eid, w root = u to[root] = v break } visited := make([]bool, n) stack := []int32{root} for len(stack) > 0 { pre := stack[len(stack)-1] stack = stack[:len(stack)-1] visited[pre] = true for _, e := range graph[pre] { next, eid := e.to, e.eid if visited[next] || eid == outEdgeId { continue } to[next] = pre stack = append(stack, next) } } cycle := []int32{to[root]} for cycle[len(cycle)-1] != root { cycle = append(cycle, to[cycle[len(cycle)-1]]) } inCycle := make([]bool, n) for _, v := range cycle { inCycle[v] = true } return &NamoriGraph{ RawEdges: edges, RawGraph: graph, N: n, Root: root, OutEdgeId: outEdgeId, OutCost: outCost, To: to, Cycle: cycle, InCycle: inCycle, } } // 断开outEdge, 生成有向树. func (ng *NamoriGraph) BuildTree() (directedGraph [][]neighbor, tree *Tree) { directedGraph = make([][]neighbor, ng.N) for eid := int32(0); eid < ng.N; eid++ { if eid == ng.OutEdgeId { continue } e := &ng.RawEdges[eid] u, v, w := e.u, e.v, e.w if ng.To[u] == v { u, v = v, u } directedGraph[u] = append(directedGraph[u], neighbor{to: v, weight: w, eid: eid}) } tree = NewTree(directedGraph) tree.Build(ng.Root) return } // 基环树求距离. func (ng *NamoriGraph) Dist(tree *Tree, u, v int32) int32 { bottom := ng.To[ng.Root] // lca为在环上的点 lca1, lca2 := tree.LCA(u, bottom), tree.LCA(v, bottom) distOnCyle := abs32(tree.Depth[lca1] - tree.Depth[lca2]) distOnCyle = min32(distOnCyle, int32(len(ng.Cycle))-distOnCyle) return distOnCyle + tree.Depth[u] + tree.Depth[v] - tree.Depth[lca1] - tree.Depth[lca2] } func (ng *NamoriGraph) DistWeighted(tree *Tree, u, v int32) int { bottom := ng.To[ng.Root] lca1, lca2 := tree.LCA(u, bottom), tree.LCA(v, bottom) distOnCycle := abs(tree.DepthWeighted[lca1] - tree.DepthWeighted[lca2]) distOnCycle = min(distOnCycle, tree.DepthWeighted[bottom]+ng.OutCost-distOnCycle) return distOnCycle + tree.DepthWeighted[u] + tree.DepthWeighted[v] - tree.DepthWeighted[lca1] - tree.DepthWeighted[lca2] } type unionFindArraySimple32 struct { Part int32 n int32 data []int32 } func newUnionFindArraySimple32(n int32) *unionFindArraySimple32 { data := make([]int32, n) for i := int32(0); i < n; i++ { data[i] = -1 } return &unionFindArraySimple32{Part: n, n: n, data: data} } func (u *unionFindArraySimple32) Union(key1, key2 int32) bool { root1, root2 := u.Find(key1), u.Find(key2) if root1 == root2 { return false } if u.data[root1] > u.data[root2] { root1, root2 = root2, root1 } u.data[root1] += u.data[root2] u.data[root2] = int32(root1) u.Part-- return true } func (u *unionFindArraySimple32) Find(key int32) int32 { if u.data[key] < 0 { return key } u.data[key] = u.Find(u.data[key]) return u.data[key] } func (u *unionFindArraySimple32) GetSize(key int32) int32 { return -u.data[u.Find(key)] } type Tree struct { Tree [][]neighbor // (next, weight) Depth []int32 DepthWeighted []int Parent []int32 LID, RID []int32 // 欧拉序[in,out) IdToNode []int32 top, heavySon []int32 timer int32 } func NewTree(graph [][]neighbor) *Tree { n := int32(len(graph)) tree := graph lid := make([]int32, n) rid := make([]int32, n) IdToNode := make([]int32, n) top := make([]int32, n) // 所处轻/重链的顶点(深度最小),轻链的顶点为自身 depth := make([]int32, n) // 深度 depthWeighted := make([]int, n) parent := make([]int32, n) // 父结点 heavySon := make([]int32, n) // 重儿子 for i := range parent { parent[i] = -1 } return &Tree{ Tree: tree, Depth: depth, DepthWeighted: depthWeighted, Parent: parent, LID: lid, RID: rid, IdToNode: IdToNode, top: top, heavySon: heavySon, } } // root:0-based // // 当root设为-1时,会从0开始遍历未访问过的连通分量 func (tree *Tree) Build(root int32) { if root != -1 { tree.build(root, -1, 0, 0) tree.markTop(root, root) } else { for i := int32(0); i < int32(len(tree.Tree)); i++ { if tree.Parent[i] == -1 { tree.build(i, -1, 0, 0) tree.markTop(i, i) } } } } // 返回 root 的欧拉序区间, 左闭右开, 0-indexed. func (tree *Tree) Id(root int32) (int32, int32) { return tree.LID[root], tree.RID[root] } // 返回返回边 u-v 对应的 欧拉序起点编号, 1 <= eid <= n-1., 0-indexed. func (tree *Tree) Eid(u, v int32) int32 { if tree.LID[u] > tree.LID[v] { return tree.LID[u] } return tree.LID[v] } func (tree *Tree) LCA(u, v int32) int32 { for { if tree.LID[u] > tree.LID[v] { u, v = v, u } if tree.top[u] == tree.top[v] { return u } v = tree.Parent[tree.top[v]] } } func (tree *Tree) RootedLCA(u, v int32, root int32) int32 { return tree.LCA(u, v) ^ tree.LCA(u, root) ^ tree.LCA(v, root) } func (tree *Tree) RootedParent(u int32, root int32) int32 { return tree.Jump(u, root, 1) } func (tree *Tree) Dist(u, v int32, weighted bool) int { if weighted { return tree.DepthWeighted[u] + tree.DepthWeighted[v] - 2*tree.DepthWeighted[tree.LCA(u, v)] } return int(tree.Depth[u] + tree.Depth[v] - 2*tree.Depth[tree.LCA(u, v)]) } // k: 0-based // // 如果不存在第k个祖先,返回-1 // kthAncestor(root,0) == root func (tree *Tree) KthAncestor(root, k int32) int32 { if k > tree.Depth[root] { return -1 } for { u := tree.top[root] if tree.LID[root]-k >= tree.LID[u] { return tree.IdToNode[tree.LID[root]-k] } k -= tree.LID[root] - tree.LID[u] + 1 root = tree.Parent[u] } } // 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed) // // 返回跳到的节点,如果不存在这样的节点,返回-1 func (tree *Tree) Jump(from, to, step int32) int32 { if step == 1 { if from == to { return -1 } if tree.IsInSubtree(to, from) { return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1) } return tree.Parent[from] } c := tree.LCA(from, to) dac := tree.Depth[from] - tree.Depth[c] dbc := tree.Depth[to] - tree.Depth[c] if step > dac+dbc { return -1 } if step <= dac { return tree.KthAncestor(from, step) } return tree.KthAncestor(to, dac+dbc-step) } func (tree *Tree) CollectChild(root int32) []int32 { res := []int32{} for _, e := range tree.Tree[root] { next := e.to if next != tree.Parent[root] { res = append(res, next) } } return res } // 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组. // // !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序. func (tree *Tree) GetPathDecomposition(u, v int32, vertex bool) [][2]int32 { up, down := [][2]int32{}, [][2]int32{} for { if tree.top[u] == tree.top[v] { break } if tree.LID[u] < tree.LID[v] { down = append(down, [2]int32{tree.LID[tree.top[v]], tree.LID[v]}) v = tree.Parent[tree.top[v]] } else { up = append(up, [2]int32{tree.LID[u], tree.LID[tree.top[u]]}) u = tree.Parent[tree.top[u]] } } edgeInt := int32(1) if vertex { edgeInt = 0 } if tree.LID[u] < tree.LID[v] { down = append(down, [2]int32{tree.LID[u] + edgeInt, tree.LID[v]}) } else if tree.LID[v]+edgeInt <= tree.LID[u] { up = append(up, [2]int32{tree.LID[u], tree.LID[v] + edgeInt}) } for i := 0; i < len(down)/2; i++ { down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i] } return append(up, down...) } // 遍历路径上的 `[起点,终点)` 欧拉序 `左闭右开` 区间. func (tree *Tree) EnumeratePathDecomposition(u, v int32, vertex bool, f func(start, end int32)) { for { if tree.top[u] == tree.top[v] { break } if tree.LID[u] < tree.LID[v] { a, b := tree.LID[tree.top[v]], tree.LID[v] if a > b { a, b = b, a } f(a, b+1) v = tree.Parent[tree.top[v]] } else { a, b := tree.LID[u], tree.LID[tree.top[u]] if a > b { a, b = b, a } f(a, b+1) u = tree.Parent[tree.top[u]] } } edgeInt := int32(1) if vertex { edgeInt = 0 } if tree.LID[u] < tree.LID[v] { a, b := tree.LID[u]+edgeInt, tree.LID[v] if a > b { a, b = b, a } f(a, b+1) } else if tree.LID[v]+edgeInt <= tree.LID[u] { a, b := tree.LID[u], tree.LID[v]+edgeInt if a > b { a, b = b, a } f(a, b+1) } } func (tree *Tree) GetPath(u, v int32) []int32 { res := []int32{} composition := tree.GetPathDecomposition(u, v, true) for _, e := range composition { a, b := e[0], e[1] if a <= b { for i := a; i <= b; i++ { res = append(res, tree.IdToNode[i]) } } else { for i := a; i >= b; i-- { res = append(res, tree.IdToNode[i]) } } } return res } // 以root为根时,结点v的子树大小. func (tree *Tree) SubSize(v, root int32) int32 { if root == -1 { return tree.RID[v] - tree.LID[v] } if v == root { return int32(len(tree.Tree)) } x := tree.Jump(v, root, 1) if tree.IsInSubtree(v, x) { return tree.RID[v] - tree.LID[v] } return int32(len(tree.Tree)) - tree.RID[x] + tree.LID[x] } // child 是否在 root 的子树中 (child和root不能相等) func (tree *Tree) IsInSubtree(child, root int32) bool { return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root] } // 寻找以 start 为 top 的重链 ,heavyPath[-1] 即为重链底端节点. func (tree *Tree) GetHeavyPath(start int32) []int32 { heavyPath := []int32{start} cur := start for tree.heavySon[cur] != -1 { cur = tree.heavySon[cur] heavyPath = append(heavyPath, cur) } return heavyPath } // 结点v的重儿子.如果没有重儿子,返回-1. func (tree *Tree) GetHeavyChild(v int32) int32 { k := tree.LID[v] + 1 if k == int32(len(tree.Tree)) { return -1 } w := tree.IdToNode[k] if tree.Parent[w] == v { return w } return -1 } func (tree *Tree) ELID(u int32) int32 { return 2*tree.LID[u] - tree.Depth[u] } func (tree *Tree) ERID(u int32) int32 { return 2*tree.RID[u] - tree.Depth[u] - 1 } func (tree *Tree) build(cur, pre, dep int32, dist int) int32 { subSize, heavySize, heavySon := int32(1), int32(0), int32(-1) for _, e := range tree.Tree[cur] { next, weight := e.to, e.weight if next != pre { nextSize := tree.build(next, cur, dep+1, dist+int(weight)) subSize += nextSize if nextSize > heavySize { heavySize, heavySon = nextSize, next } } } tree.Depth[cur] = dep tree.DepthWeighted[cur] = dist tree.heavySon[cur] = heavySon tree.Parent[cur] = pre return subSize } func (tree *Tree) markTop(cur, top int32) { tree.top[cur] = top tree.LID[cur] = tree.timer tree.IdToNode[tree.timer] = cur tree.timer++ heavySon := tree.heavySon[cur] if heavySon != -1 { tree.markTop(heavySon, top) for _, e := range tree.Tree[cur] { next := e.to if next != heavySon && next != tree.Parent[cur] { tree.markTop(next, next) } } } tree.RID[cur] = tree.timer } func min(a, b int) int { if a < b { return a } return b } func min32(a, b int32) int32 { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b } func max32(a, b int32) int32 { if a > b { return a } return b } func abs32(a int32) int32 { if a < 0 { return -a } return a } func abs(a int) int { if a < 0 { return -a } return a }