結果
| 問題 |
No.2751 429-like Number
|
| コンテスト | |
| ユーザー |
Magentor
|
| 提出日時 | 2024-05-10 21:27:15 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 594 ms / 4,000 ms |
| コード長 | 3,983 bytes |
| コンパイル時間 | 5,425 ms |
| コンパイル使用メモリ | 317,044 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-20 04:18:11 |
| 合計ジャッジ時間 | 10,024 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 22 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
using namespace atcoder;
template<typename T> inline bool chmax(T &a, T b) { return ((a < b) ? (a = b, true) : (false)); }
template<typename T> inline bool chmin(T &a, T b) { return ((a > b) ? (a = b, true) : (false)); }
#define rep(i, n) for (long long i = 0; i < (long long)(n); i++)
#define rep2(i, m ,n) for (int i = (m); i < (long long)(n); i++)
#define REP(i, n) for (long long i = 1; i < (long long)(n); i++)
typedef long long ll;
#define updiv(N,X) (N + X - 1) / X
#define l(n) n.begin(),n.end()
#define YesNo(Q) Q==1?cout<<"Yes":cout<<"No"
using P = pair<int, int>;
using mint = modint;
const int MOD = 998244353LL;
const ll INF = 999999999999LL;
vector<long long> fact, fact_inv, inv;
/* init_nCk :二項係数のための前処理
計算量:O(n)
*/
template <typename T>
void input(vector<T> &v){
rep(i,v.size()){cin>>v[i];}
return;
}
void init_nCk(int SIZE) {
fact.resize(SIZE + 5);
fact_inv.resize(SIZE + 5);
inv.resize(SIZE + 5);
fact[0] = fact[1] = 1;
fact_inv[0] = fact_inv[1] = 1;
inv[1] = 1;
for (int i = 2; i < SIZE + 5; i++) {
fact[i] = fact[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
fact_inv[i] = fact_inv[i - 1] * inv[i] % MOD;
}
}
/* nCk :MODでの二項係数を求める(前処理 int_nCk が必要)
計算量:O(1)
*/
long long nCk(int n, int k) {
assert(!(n < k));
assert(!(n < 0 || k < 0));
return fact[n] * (fact_inv[k] * fact_inv[n - k] % MOD) % MOD;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
ll POW(ll a,ll n){
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
// Miller-Rabin 素数判定法
template<class T> T pow_mod(T A, T N, T M) {
T res = 1 % M;
A %= M;
while (N) {
if (N & 1) res = (res * A) % M;
A = (A * A) % M;
N >>= 1;
}
return res;
}
bool is_prime(long long N) {
if (N <= 1) return false;
if (N == 2 || N == 3) return true;
if (N % 2 == 0) return false;
vector<long long> A = {2, 325, 9375, 28178, 450775,
9780504, 1795265022};
long long s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
for (auto a : A) {
if (a % N == 0) return true;
long long t, x = pow_mod<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return false;
}
}
return true;
}
// Pollard のロー法
long long gcd(long long A, long long B) {
A = abs(A), B = abs(B);
if (B == 0) return A;
else return gcd(B, A % B);
}
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (is_prime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (true) {
++step;
long long x = step, y = f(x);
while (true) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
vector<long long> prime_factorize(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = prime_factorize(p);
vector<long long> right = prime_factorize(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
int main() {
int q;cin>>q;
rep(i,q){
ll n;cin>>n;
auto u = prime_factorize(n);
if(u.size()==3){cout<<"Yes"<<endl;}
else{cout<<"No"<<endl;}
}
}
Magentor