結果

問題 No.2751 429-like Number
ユーザー torisasami4torisasami4
提出日時 2024-05-10 21:30:36
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 83 ms / 4,000 ms
コード長 13,202 bytes
コンパイル時間 2,771 ms
コンパイル使用メモリ 218,096 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-20 04:24:28
合計ジャッジ時間 4,671 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 6
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #define _GLIBCXX_DEBUG
// #pragma GCC optimize("O2,unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
using maxheap = std::priority_queue<T>;
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
struct Union_Find_Tree {
vector<int> data;
const int n;
int cnt;
Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
int root(int x) {
if (data[x] < 0) return x;
return data[x] = root(data[x]);
}
int operator[](int i) { return root(i); }
bool unite(int x, int y) {
x = root(x), y = root(y);
if (x == y) return false;
// if (data[x] > data[y]) swap(x, y);
data[x] += data[y], data[y] = x;
cnt--;
return true;
}
int size(int x) { return -data[root(x)]; }
int count() { return cnt; };
bool same(int x, int y) { return root(x) == root(y); }
void clear() {
cnt = n;
fill(begin(data), end(data), -1);
}
};
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T>
T modinv(T a, const T &m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
const int MOD = 1000000007;
// const int MOD = 998244353;
using mint = Mod_Int<MOD>;
// ----- library -------
//
// O(log(n))O(n^(1/4)log(n))
//
//
//
// verified with
// https://judge.yosupo.jp/problem/primarity_test
// https://judge.yosupo.jp/problem/factorize
using namespace std;
// mod-int (64 )
// O(1)O(log(mod))k O(log(k))
//
//
// R = 2^64 R
// reduction 2*mod
// verified with
// https://judge.yosupo.jp/problem/factorize
using namespace std;
struct Montgomery_Mod_Int_64 {
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r; // m*r ≡ 1 (mod 2^64)
static u64 n2; // 2^128 (mod mod)
u64 x;
Montgomery_Mod_Int_64() : x(0) {}
Montgomery_Mod_Int_64(long long b) : x(reduce((u128(b) + mod) * n2)) {}
// mod 2^64
static u64 get_r() {
u64 ret = mod;
for (int i = 0; i < 5; i++) ret *= 2 - mod * ret;
return ret;
}
static u64 get_mod() { return mod; }
static void set_mod(u64 m) {
assert(m < (1LL << 62));
assert((m & 1) == 1);
mod = m;
n2 = -u128(m) % m;
r = get_r();
assert(r * mod == 1);
}
static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; }
Montgomery_Mod_Int_64 &operator+=(const Montgomery_Mod_Int_64 &p) {
if ((x += p.x) >= 2 * mod) x -= 2 * mod;
return *this;
}
Montgomery_Mod_Int_64 &operator-=(const Montgomery_Mod_Int_64 &p) {
if ((x += 2 * mod - p.x) >= 2 * mod) x -= 2 * mod;
return *this;
}
Montgomery_Mod_Int_64 &operator*=(const Montgomery_Mod_Int_64 &p) {
x = reduce(u128(x) * p.x);
return *this;
}
Montgomery_Mod_Int_64 &operator/=(const Montgomery_Mod_Int_64 &p) {
*this *= p.inverse();
return *this;
}
Montgomery_Mod_Int_64 &operator++() { return *this += Montgomery_Mod_Int_64(1); }
Montgomery_Mod_Int_64 operator++(int) {
Montgomery_Mod_Int_64 tmp = *this;
++*this;
return tmp;
}
Montgomery_Mod_Int_64 &operator--() { return *this -= Montgomery_Mod_Int_64(1); }
Montgomery_Mod_Int_64 operator--(int) {
Montgomery_Mod_Int_64 tmp = *this;
--*this;
return tmp;
}
Montgomery_Mod_Int_64 operator+(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) += p; };
Montgomery_Mod_Int_64 operator-(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) -= p; };
Montgomery_Mod_Int_64 operator*(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) *= p; };
Montgomery_Mod_Int_64 operator/(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) /= p; };
bool operator==(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); };
bool operator!=(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); };
Montgomery_Mod_Int_64 inverse() const {
assert(*this != Montgomery_Mod_Int_64(0));
return pow(mod - 2);
}
Montgomery_Mod_Int_64 pow(long long k) const {
Montgomery_Mod_Int_64 now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
u64 get() const {
u64 ret = reduce(x);
return ret >= mod ? ret - mod : ret;
}
friend ostream &operator<<(ostream &os, const Montgomery_Mod_Int_64 &p) { return os << p.get(); }
friend istream &operator>>(istream &is, Montgomery_Mod_Int_64 &p) {
long long a;
is >> a;
p = Montgomery_Mod_Int_64(a);
return is;
}
};
typename Montgomery_Mod_Int_64::u64 Montgomery_Mod_Int_64::mod, Montgomery_Mod_Int_64::r, Montgomery_Mod_Int_64::n2;
//
// O(1)
using namespace std;
struct Random_Number_Generator {
mt19937_64 mt;
Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}
// [l,r)
int64_t operator()(int64_t l, int64_t r) {
uniform_int_distribution<int64_t> dist(l, r - 1);
return dist(mt);
}
// [0,r)
int64_t operator()(int64_t r) { return (*this)(0, r); }
} rng;
bool Miller_Rabin(long long n, vector<long long> as) {
using Mint = Montgomery_Mod_Int_64;
if (Mint::get_mod() != uint64_t(n)) Mint::set_mod(n);
long long d = n - 1;
while (!(d & 1)) d >>= 1;
Mint e = 1, rev = n - 1;
for (long long a : as) {
if (n <= a) break;
long long t = d;
Mint y = Mint(a).pow(t);
while (t != n - 1 && y != e && y != rev) {
y *= y;
t <<= 1;
}
if (y != rev && (!(t & 1))) return false;
}
return true;
}
bool is_prime(long long n) {
if (!(n & 1)) return n == 2;
if (n <= 1) return false;
if (n < (1LL << 30)) return Miller_Rabin(n, {2, 7, 61});
return Miller_Rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
long long Pollard_rho(long long n) {
using Mint = Montgomery_Mod_Int_64;
if (!(n & 1)) return 2;
if (is_prime(n)) return n;
if (Mint::get_mod() != uint64_t(n)) Mint::set_mod(n);
Mint R, one = 1;
auto f = [&](Mint x) { return x * x + R; };
auto rnd = [&]() { return rng(n - 2) + 2; };
while (true) {
Mint x, y, ys, q = one;
R = rnd(), y = rnd();
long long g = 1;
int m = 128;
for (int r = 1; g == 1; r <<= 1) {
x = y;
for (int i = 0; i < r; i++) y = f(y);
for (int k = 0; g == 1 && k < r; k += m) {
ys = y;
for (int i = 0; i < m && i < r - k; i++) q *= x - (y = f(y));
g = gcd(q.get(), n);
}
}
if (g == n) {
do { g = gcd((x - (ys = f(ys))).get(), n); } while (g == 1);
}
if (g != n) return g;
}
return 0;
}
vector<long long> factorize(long long n) {
if (n <= 1) return {};
long long p = Pollard_rho(n);
if (p == n) return {n};
auto l = factorize(p);
auto r = factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<pair<long long, int>> prime_factor(long long n) {
auto ps = factorize(n);
sort(begin(ps), end(ps));
vector<pair<long long, int>> ret;
for (auto &e : ps) {
if (!ret.empty() && ret.back().first == e) {
ret.back().second++;
} else {
ret.emplace_back(e, 1);
}
}
return ret;
}
vector<long long> divisors(long long n) {
auto ps = prime_factor(n);
int cnt = 1;
for (auto &[p, t] : ps) cnt *= t + 1;
vector<long long> ret(cnt, 1);
cnt = 1;
for (auto &[p, t] : ps) {
long long pw = 1;
for (int i = 1; i <= t; i++) {
pw *= p;
for (int j = 0; j < cnt; j++) ret[cnt * i + j] = ret[j] * pw;
}
cnt *= t + 1;
}
sort(begin(ret), end(ret));
return ret;
}
// ----- library -------
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
int T;
cin >> T;
while (T--) {
ll n;
cin >> n;
auto ret = prime_factor(n);
int cnt = 0;
for(auto [p, c] : ret) cnt += c;
cout << (cnt == 3 ? "Yes" : "No") << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0