結果
問題 | No.2751 429-like Number |
ユーザー |
![]() |
提出日時 | 2024-05-10 21:30:36 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 83 ms / 4,000 ms |
コード長 | 13,202 bytes |
コンパイル時間 | 2,771 ms |
コンパイル使用メモリ | 218,096 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-20 04:24:28 |
合計ジャッジ時間 | 4,671 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 6 |
other | AC * 22 |
ソースコード
// #define _GLIBCXX_DEBUG// #pragma GCC optimize("O2,unroll-loops")#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < int(n); i++)#define per(i, n) for (int i = (n)-1; 0 <= i; i--)#define rep2(i, l, r) for (int i = (l); i < int(r); i++)#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)#define each(e, v) for (auto &e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()template <typename T>void print(const vector<T> &v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}using ll = long long;using pii = pair<int, int>;using pll = pair<ll, ll>;template <typename T>bool chmax(T &x, const T &y) {return (x < y) ? (x = y, true) : false;}template <typename T>bool chmin(T &x, const T &y) {return (x > y) ? (x = y, true) : false;}template <class T>using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <class T>using maxheap = std::priority_queue<T>;template <typename T>int lb(const vector<T> &v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T>int ub(const vector<T> &v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T>void rearrange(vector<T> &v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}// __int128_t gcd(__int128_t a, __int128_t b) {// if (a == 0)// return b;// if (b == 0)// return a;// __int128_t cnt = a % b;// while (cnt != 0) {// a = b;// b = cnt;// cnt = a % b;// }// return b;// }struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;// if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <int mod>struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int &operator+=(const Mod_Int &p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int &operator-=(const Mod_Int &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int &operator*=(const Mod_Int &p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int &operator/=(const Mod_Int &p) {*this *= p.inverse();return *this;}Mod_Int &operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int &operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int &p) const { return x == p.x; }bool operator!=(const Mod_Int &p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream &operator<<(ostream &os, const Mod_Int &p) {return os << p.x;}friend istream &operator>>(istream &is, Mod_Int &p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};ll mpow(ll x, ll n, ll mod) {ll ans = 1;x %= mod;while (n != 0) {if (n & 1) ans = ans * x % mod;x = x * x % mod;n = n >> 1;}ans %= mod;return ans;}template <typename T>T modinv(T a, const T &m) {T b = m, u = 1, v = 0;while (b > 0) {T t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return u >= 0 ? u % m : (m - (-u) % m) % m;}ll divide_int(ll a, ll b) {if (b < 0) a = -a, b = -b;return (a >= 0 ? a / b : (a - b + 1) / b);}const int MOD = 1000000007;// const int MOD = 998244353;using mint = Mod_Int<MOD>;// ----- library -------// 高速素因数分解// 計算量 素数判定:O(log(n))、素因数分解:O(n^(1/4)log(n))// 概要// ミラーラビンの素数判定法で素数判定をし、素数なら終了する。// 素数でないならばポラードのロー法で非自明な約数を発見し、再帰的に素因数分解する。// verified with// https://judge.yosupo.jp/problem/primarity_test// https://judge.yosupo.jp/problem/factorizeusing namespace std;// モンゴメリ乗算 mod-int 構造体 (64 ビット)// 計算量 加減乗算:O(1)、除算:O(log(mod))、k 乗:O(log(k))// 概要// モントゴメリ乗算を用いて積の剰余を計算する。// R = 2^64 として、R がかかった状態での値を保持している。// また reduction の高速化として、2*mod での余りを保持している。// verified with// https://judge.yosupo.jp/problem/factorizeusing namespace std;struct Montgomery_Mod_Int_64 {using u64 = uint64_t;using u128 = __uint128_t;static u64 mod;static u64 r; // m*r ≡ 1 (mod 2^64)static u64 n2; // 2^128 (mod mod)u64 x;Montgomery_Mod_Int_64() : x(0) {}Montgomery_Mod_Int_64(long long b) : x(reduce((u128(b) + mod) * n2)) {}// mod 2^64 での逆元static u64 get_r() {u64 ret = mod;for (int i = 0; i < 5; i++) ret *= 2 - mod * ret;return ret;}static u64 get_mod() { return mod; }static void set_mod(u64 m) {assert(m < (1LL << 62));assert((m & 1) == 1);mod = m;n2 = -u128(m) % m;r = get_r();assert(r * mod == 1);}static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; }Montgomery_Mod_Int_64 &operator+=(const Montgomery_Mod_Int_64 &p) {if ((x += p.x) >= 2 * mod) x -= 2 * mod;return *this;}Montgomery_Mod_Int_64 &operator-=(const Montgomery_Mod_Int_64 &p) {if ((x += 2 * mod - p.x) >= 2 * mod) x -= 2 * mod;return *this;}Montgomery_Mod_Int_64 &operator*=(const Montgomery_Mod_Int_64 &p) {x = reduce(u128(x) * p.x);return *this;}Montgomery_Mod_Int_64 &operator/=(const Montgomery_Mod_Int_64 &p) {*this *= p.inverse();return *this;}Montgomery_Mod_Int_64 &operator++() { return *this += Montgomery_Mod_Int_64(1); }Montgomery_Mod_Int_64 operator++(int) {Montgomery_Mod_Int_64 tmp = *this;++*this;return tmp;}Montgomery_Mod_Int_64 &operator--() { return *this -= Montgomery_Mod_Int_64(1); }Montgomery_Mod_Int_64 operator--(int) {Montgomery_Mod_Int_64 tmp = *this;--*this;return tmp;}Montgomery_Mod_Int_64 operator+(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) += p; };Montgomery_Mod_Int_64 operator-(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) -= p; };Montgomery_Mod_Int_64 operator*(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) *= p; };Montgomery_Mod_Int_64 operator/(const Montgomery_Mod_Int_64 &p) const { return Montgomery_Mod_Int_64(*this) /= p; };bool operator==(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); };bool operator!=(const Montgomery_Mod_Int_64 &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); };Montgomery_Mod_Int_64 inverse() const {assert(*this != Montgomery_Mod_Int_64(0));return pow(mod - 2);}Montgomery_Mod_Int_64 pow(long long k) const {Montgomery_Mod_Int_64 now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}u64 get() const {u64 ret = reduce(x);return ret >= mod ? ret - mod : ret;}friend ostream &operator<<(ostream &os, const Montgomery_Mod_Int_64 &p) { return os << p.get(); }friend istream &operator>>(istream &is, Montgomery_Mod_Int_64 &p) {long long a;is >> a;p = Montgomery_Mod_Int_64(a);return is;}};typename Montgomery_Mod_Int_64::u64 Montgomery_Mod_Int_64::mod, Montgomery_Mod_Int_64::r, Montgomery_Mod_Int_64::n2;// 乱数発生// 計算量 O(1)using namespace std;struct Random_Number_Generator {mt19937_64 mt;Random_Number_Generator() : mt(chrono::steady_clock::now().time_since_epoch().count()) {}// 区間 [l,r) の整数で乱数発生int64_t operator()(int64_t l, int64_t r) {uniform_int_distribution<int64_t> dist(l, r - 1);return dist(mt);}// 区間 [0,r) の整数で乱数発生int64_t operator()(int64_t r) { return (*this)(0, r); }} rng;bool Miller_Rabin(long long n, vector<long long> as) {using Mint = Montgomery_Mod_Int_64;if (Mint::get_mod() != uint64_t(n)) Mint::set_mod(n);long long d = n - 1;while (!(d & 1)) d >>= 1;Mint e = 1, rev = n - 1;for (long long a : as) {if (n <= a) break;long long t = d;Mint y = Mint(a).pow(t);while (t != n - 1 && y != e && y != rev) {y *= y;t <<= 1;}if (y != rev && (!(t & 1))) return false;}return true;}bool is_prime(long long n) {if (!(n & 1)) return n == 2;if (n <= 1) return false;if (n < (1LL << 30)) return Miller_Rabin(n, {2, 7, 61});return Miller_Rabin(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});}long long Pollard_rho(long long n) {using Mint = Montgomery_Mod_Int_64;if (!(n & 1)) return 2;if (is_prime(n)) return n;if (Mint::get_mod() != uint64_t(n)) Mint::set_mod(n);Mint R, one = 1;auto f = [&](Mint x) { return x * x + R; };auto rnd = [&]() { return rng(n - 2) + 2; };while (true) {Mint x, y, ys, q = one;R = rnd(), y = rnd();long long g = 1;int m = 128;for (int r = 1; g == 1; r <<= 1) {x = y;for (int i = 0; i < r; i++) y = f(y);for (int k = 0; g == 1 && k < r; k += m) {ys = y;for (int i = 0; i < m && i < r - k; i++) q *= x - (y = f(y));g = gcd(q.get(), n);}}if (g == n) {do { g = gcd((x - (ys = f(ys))).get(), n); } while (g == 1);}if (g != n) return g;}return 0;}vector<long long> factorize(long long n) {if (n <= 1) return {};long long p = Pollard_rho(n);if (p == n) return {n};auto l = factorize(p);auto r = factorize(n / p);copy(begin(r), end(r), back_inserter(l));return l;}vector<pair<long long, int>> prime_factor(long long n) {auto ps = factorize(n);sort(begin(ps), end(ps));vector<pair<long long, int>> ret;for (auto &e : ps) {if (!ret.empty() && ret.back().first == e) {ret.back().second++;} else {ret.emplace_back(e, 1);}}return ret;}vector<long long> divisors(long long n) {auto ps = prime_factor(n);int cnt = 1;for (auto &[p, t] : ps) cnt *= t + 1;vector<long long> ret(cnt, 1);cnt = 1;for (auto &[p, t] : ps) {long long pw = 1;for (int i = 1; i <= t; i++) {pw *= p;for (int j = 0; j < cnt; j++) ret[cnt * i + j] = ret[j] * pw;}cnt *= t + 1;}sort(begin(ret), end(ret));return ret;}// ----- library -------int main() {ios::sync_with_stdio(false);std::cin.tie(nullptr);cout << fixed << setprecision(15);int T;cin >> T;while (T--) {ll n;cin >> n;auto ret = prime_factor(n);int cnt = 0;for(auto [p, c] : ret) cnt += c;cout << (cnt == 3 ? "Yes" : "No") << endl;}}