結果
問題 | No.2751 429-like Number |
ユーザー | igeee |
提出日時 | 2024-05-10 21:48:54 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,384 ms / 4,000 ms |
コード長 | 5,440 bytes |
コンパイル時間 | 5,315 ms |
コンパイル使用メモリ | 267,792 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-20 05:05:39 |
合計ジャッジ時間 | 35,953 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 6 |
other | AC * 22 |
ソースコード
#include <bits/stdc++.h> #include <atcoder/all> using namespace std; using namespace atcoder; #define rep(i, n) for (long long i = 0; i < (long long)(n); i++) #define rrep(i,start,end) for (long long i = start;i >= (long long)(end);i--) #define repn(i,end) for(long long i = 0; i <= (long long)(end); i++) #define reps(i,start,end) for(long long i = start; i < (long long)(end); i++) #define repsn(i,start,end) for(long long i = start; i <= (long long)(end); i++) #define each(p,a) for(auto &p:a) typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef vector<long long> vll; typedef vector<pair<long long ,long long>> vpll; typedef vector<vector<long long>> vvll; typedef set<ll> sll; typedef map<long long , long long> mpll; typedef pair<long long ,long long> pll; typedef tuple<long long , long long , long long> tpl3; #define LL(...) ll __VA_ARGS__; input(__VA_ARGS__) #define LD(...) ld __VA_ARGS__; input(__VA_ARGS__) #define Str(...) string __VA_ARGS__; input(__VA_ARGS__) #define Ch(...) char __VA_ARGS__; input(__VA_ARGS__) #define all(a) (a).begin(),(a).end() #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); #define sz(x) (int)x.size() // << std::fixed << std::setprecision(10) const ll INF = 1LL << 60; const ld EPS = 1e-9; inline ll lfloor(ll x,ll m){return (x - ((x % m+ m)%m))/m;} inline ll positive_mod(ll a,ll m){return (a % m + m)%m;} inline ll popcnt(ull a){ return __builtin_popcountll(a);} template<class T> bool chmin(T& a, T b){if(a > b){a = b;return true;}return false;} template<class T> bool chmax(T& a, T b){if(a < b){a = b;return true;}return false;} template<typename T> std::istream &operator>>(std::istream&is,std::vector<T>&v){for(T &in:v){is>>in;}return is;} template<typename T> std::ostream &operator<<(std::ostream&os,const std::vector<T>&v){for(auto it=std::begin(v);it!=std::end(v);){os<<*it<<((++it)!=std::end(v)?" ":"");}return os;} template<typename T1, typename T2>std::ostream &operator<< (std::ostream &os, std::pair<T1,T2> p){os << "{" << p.first << "," << p.second << "}";return os;} template<class... T>void input(T&... a){(cin >> ... >> a);} void print(){cout << endl;} template<class T, class... Ts>void print(const T& a, const Ts&... b){cout << a;((cout << ' ' << b), ...);cout << endl;} template<class T> void pspace(const T& a){ cout << a << ' ';} void perr(){cerr << endl;} template<class T, class... Ts>void perr(const T& a, const Ts&... b){cerr << a;((cerr << ' ' << b), ...);cerr << endl;} void yes(bool i = true){ return print(i?"yes":"no"); } void Yes(bool i = true){ return print(i?"Yes":"No"); } void YES(bool i = true){ return print(i?"YES":"NO"); } template <class T> vector<T> &operator++(vector<T> &v) {for(auto &e : v) e++;return v;} template <class T> vector<T> operator++(vector<T> &v, signed) {auto res = v;for(auto &e : v) e++;return res;} template <class T> vector<T> &operator--(vector<T> &v) {for(auto &e : v) e--;return v;} template <class T> vector<T> operator--(vector<T> &v, signed) {auto res = v;for(auto &e : v) e--;return res;} //grid探索用 vector<ll> _ta = {0,0,1,-1,1,1,-1,-1}; vector<ll> _yo = {1,-1,0,0,1,-1,1,-1}; bool isin(ll now_i,ll now_j,ll h,ll w){return (0<=now_i && now_i < h && 0 <= now_j && now_j < w);} ll lpow(ll x,ll n){ll ans = 1;while(n >0){if(n & 1)ans *= x;x *= x;n >>= 1;}return ans;} ll Modlpow(ll x,ll n,ll m){ll ans = 1;ll a = x%m;while(n >0){if(n & 1){ans *= a;ans%= m;}a *= a;a %= m;n >>= 1;}return ans;} const ll MOD9 = 998244353LL; const ll MOD10 = 1000000007LL; //https://drken1215.hatenablog.com/entry/2023/05/23/233000 // A^N mod M template<class T> T pow_mod(T A, T N, T M) { T res = 1 % M; A %= M; while (N) { if (N & 1) res = (res * A) % M; A = (A * A) % M; N >>= 1; } return res; } bool MillerRabin(long long N, vector<long long> A) { long long s = 0, d = N - 1; while (d % 2 == 0) { ++s; d >>= 1; } for (auto a : A) { if (N <= a) return true; long long t, x = pow_mod<__int128_t>(a, d, N); if (x != 1) { for (t = 0; t < s; ++t) { if (x == N - 1) break; x = __int128_t(x) * x % N; } if (t == s) return false; } } return true; } bool is_prime(long long N) { if (N <= 1) return false; if (N == 2) return true; if (N % 2 == 0) return false; if (N < 4759123141LL) return MillerRabin(N, {2, 7, 61}); else return MillerRabin(N, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } //素因数分解 ll enumpr(ll n) { ll V = 0; for(ll i=2;i*i<=n;i++) { while(n%i==0){ V++; if(V >= 4){ return INF; } n/=i; } } if(n>1) V++; return V; } //約数列挙 vector<ll> divisor(ll n){ vector<ll> ret; for(ll i = 1;i * i <= n;i++){ if(n % i == 0){ ret.push_back(i); if(i * i != n)ret.push_back(n/i); } } //昇順 sort(all(ret)); return ret; } int main(){ ios::sync_with_stdio(false);cin.tie(nullptr); LL(q); vll pri; reps(i,2,lpow(10,5) + 2){ if(divisor(i).size() == 2){ pri.push_back(i); } } rep(i,q){ LL(a); ll b = a; ll cnt = 0; ll div = 1; each(p,pri){ while(a % p == 0){ a/= p; cnt++; div *= p; } } Yes((cnt== 3 && div ==b )or (cnt == 2 && b/div >= lpow(10,5))); } }