結果

問題 No.2751 429-like Number
ユーザー iiljjiiljj
提出日時 2024-05-10 22:42:29
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 15,303 bytes
コンパイル時間 2,197 ms
コンパイル使用メモリ 177,592 KB
実行使用メモリ 10,272 KB
最終ジャッジ日時 2024-05-10 22:42:46
合計ジャッジ時間 7,406 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,812 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 17 ms
6,940 KB
testcase_07 AC 19 ms
6,940 KB
testcase_08 AC 24 ms
6,944 KB
testcase_09 AC 13 ms
6,944 KB
testcase_10 TLE -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath>   // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d)                                                   \
    for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d)                                                  \
    for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d)                                                       \
    for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d)                                                      \
    for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define ISIZE(x) ((int)(x).size())
#define PERM(c)                                                                \
    sort(ALL(c));                                                              \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

// 前方宣言
template <typename T> istream &operator>>(istream &is, vc<T> &vec);
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec);
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec);
template <typename T, size_t _Nm>
istream &operator>>(istream &is, array<T, _Nm> &arr);
template <typename T, size_t _Nm>
ostream &operator<<(ostream &os, const array<T, _Nm> &arr);
template <typename T, size_t _Nm>
ostream &operator>>(ostream &os, const array<T, _Nm> &arr);
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &pair_var);
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &pair_var);
template <class T> ostream &out_iter(ostream &os, const T &map_var);
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var);
template <typename T, typename U>
ostream &operator<<(ostream &os, const um<T, U> &map_var);
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var);
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var);
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var);
template <typename T>
ostream &operator<<(ostream &os, const queue<T> &queue_var);
template <typename T> ostream &operator<<(ostream &os, const stack<T> &stk_var);

template <typename T>
istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec)
        is >> x;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T>
ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, size_t _Nm>
istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力
    REP(i, 0, SIZE(arr)) is >> arr[i];
    return is;
}
template <typename T, size_t _Nm>
ostream &operator<<(ostream &os,
                    const array<T, _Nm> &arr) { // array 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}

template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end())
            os << ", ";
    }
    return os << "}";
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    return out_iter(os, map_var);
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end())
            os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {
    return out_iter(os, set_var);
}
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) {
    return out_iter(os, set_var);
}
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty())
            os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

// tuple 出力
template <size_t N = 0, bool end_line = false, typename... Args>
ostream &operator<<(ostream &os, tuple<Args...> &a) {
    if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
        os << get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
            os << ' ';
        } else if constexpr (end_line) {
            os << '\n';
        }
        return operator<< <N + 1, end_line>(os, a);
    }
    return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) {
    operator<< <0, true>(std::cout, a);
}

void pprint() { std::cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
    std::cout << head;
    if (sizeof...(Tail) > 0)
        std::cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&...tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0)
        DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>>
bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>>
bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifndef MYLOCAL
#undef DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                              \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                            \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]"        \
            << endl                                                            \
            << "    ",                                                         \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                         \
    type __VA_ARGS__;                                                          \
    assert((std::cin >> __VA_ARGS__));

template <typename T> istream &operator,(istream &is, T &rhs) {
    return is >> rhs;
}
template <typename T> ostream &operator,(ostream &os, const T &rhs) {
    return os << ' ' << rhs;
}

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), std::cin.tie(nullptr),
            std::cout.tie(nullptr);
        std::cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH)
            std::cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { std::cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { std::cout << (p ? "YES" : "NO") << endl; }

template <typename T> constexpr void operator--(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i)
        v[i]--;
}
template <typename T> constexpr void operator++(vc<T> &v, int) noexcept {
    for (int i = 0; i < ISIZE(v); ++i)
        v[i]++;
}

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region rho */

// ミラーラビン素数判定法とロー法 - ジョイジョイジョイ
// http://joisino.hatenablog.com/entry/2017/08/03/210000
// ポラード・ロー素因数分解法(Pollard's rho algorithm) PKU 2447とか. - おろログ
// http://orolog.hatenablog.jp/entry/20100804/1280943541

/* #region miller */

// ミラー・ラビン素数判定法クラス
template <typename T = __int128_t> class Miller {
    const vc<vc<T>> bases = {
        {2, 3},
        {2, 299417},
        {2, 7, 61}, // < 4,759,123,141
        {15, 176006322, 4221622697ull},
        {2, 2570940, 211991001, 3749873356ull},
        {2, 2570940, 880937, 610386380, 4130785767ull},
        {2, 325, 9375, 28178, 450775, 9780504, 1795265022ull}};

    // x^k (mod m) を返す
    inline T modpow(T x, T k, const T &m) {
        T res = 1;
        while (k) {
            if (k & 1)
                res = res * x % m;
            k /= 2;
            x = x * x % m;
        }
        return res;
    }

    // 合成数とわかったら true を返す
    inline bool is_composite(T n, T a, T s, T d) {
        if (a == n)
            return false;
        if (modpow(a, d, n) != 1) { // a^d mod n != 1
            bool composite = true;
            // for (T r = 0; r < s; ++r) {                          // [0, s)
            // の範囲の全ての r について
            //     if (modpow(a, d * ((T)1ull << r), n) == n - 1) { // a^(2^r *
            //     d) mod n != -1 じゃない
            //         composite = false;
            //         break;
            //     }
            // }
            a = modpow(a, d, n);
            if (a == n - 1)
                return false; // 合成数とは言い切れない
            for (T r = 1; r < s; ++r) {
                a = (a * a) % n;
                // pprint("aa", a);
                if (a == n - 1) { // a^(2^r * d) mod n != -1 じゃない
                    // dump(n, a, s, d, n - 1);
                    composite = false;
                    break;
                }
            }
            return composite;
        }
        return false; // 合成数とは言い切れない
    }

  public:
    // n が素数かどうか判定する
    bool is_probably_prime(const T &n) {
        if (n < 2)
            return false;
        if (!(n & 1))
            return n == 2;
        if (n <= 8)
            return true;

        // base 選択
        int x = (n < 1373653ll) ? 0 : //
                    (n < 19471033ll) ? 1
                                     : //
                    (n < 4759123141ll) ? 2
                                       : //
                    (n < 154639673381ll) ? 3
                                         : //
                    (n < 47636622961201ll) ? 4
                                           : //
                    (n < 3770579582154547ll) ? 5
                                             : 6; //

        // n-1 を 2 の冪乗で割って,2^s * d の形にする
        T d = n - 1;
        T s = 0;
        while (d % 2 == 0) {
            d /= 2;
            s++;
        }
        // dump(x);
        for (const T &a : bases[x]) { // [1, n-1] から a を選ぶ
            if (is_composite(n, a, s, d)) {
                // dump(n, a, s, d);
                return false; // 合成数なら false を返す
            }
        }
        return true; // probably prime
    }
};

/* #endregion */

// ポラード・ロー素因数分解法クラス
template <typename T = ll> class Rho {
    mt19937 mt;
    Miller<T> miller;
    T c;

    // 乱数生成
    inline T f(T x, T n) { return ((((x % n) * (x % n)) % n) + (c % n)) % n; }

    // 合成数 n の自明でない素因数を 1 つ見つける.失敗した場合は -1 を返す.
    inline T get_factor(T n) {
        if (n == 4)
            return 2;

        c = (T)mt() % n;
        T x = (T)mt() % n;
        T y = x;
        T d = 1;
        while (d == 1) {
            x = f(x, n);
            y = f(f(y, n), n);
            d = std::gcd<T>(std::abs(x - y), n);
        }
        if (d == n)
            return -1;
        return d;
    }

  public:
    // コンストラクタ
    Rho() { mt.seed(clock()); }

    // n を素因数分解する
    ll decompose(T n) {
        if (n <= 1)
            return 0;
        if (miller.is_probably_prime(n))
            return 1; // 素数を弾く

        T res = -1;
        while (res == -1)
            res = get_factor(n);

        ll fa = decompose(res);
        if (fa >= 4 || (fa >= 3 and (n / res >= 2))) {
            return fa + 1;
        }
        ll fb = decompose(n / res);
        return fa + fb;
    }
};

/* #endregion */

// Problem
void solve() {
    VAR(ll, q);
    vll a(q);
    cin >> a;

    Rho<> rho;
    REP(i, 0, q) {
        ll ans = rho.decompose(a[i]);
        Yn((ans) == 3);
    }
}

// entry point
int main() {
    solve();
    return 0;
}
0