結果
問題 | No.2751 429-like Number |
ユーザー | fuppy_kyopro |
提出日時 | 2024-05-11 00:24:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 81 ms / 4,000 ms |
コード長 | 12,797 bytes |
コンパイル時間 | 2,680 ms |
コンパイル使用メモリ | 216,524 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-05-11 00:24:57 |
合計ジャッジ時間 | 5,024 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 28 ms
6,940 KB |
testcase_08 | AC | 30 ms
6,944 KB |
testcase_09 | AC | 20 ms
6,940 KB |
testcase_10 | AC | 32 ms
6,944 KB |
testcase_11 | AC | 47 ms
6,944 KB |
testcase_12 | AC | 49 ms
6,940 KB |
testcase_13 | AC | 43 ms
6,940 KB |
testcase_14 | AC | 53 ms
6,944 KB |
testcase_15 | AC | 81 ms
6,940 KB |
testcase_16 | AC | 37 ms
6,940 KB |
testcase_17 | AC | 38 ms
6,944 KB |
testcase_18 | AC | 48 ms
6,944 KB |
testcase_19 | AC | 48 ms
6,940 KB |
testcase_20 | AC | 49 ms
6,944 KB |
testcase_21 | AC | 48 ms
6,940 KB |
testcase_22 | AC | 48 ms
6,940 KB |
testcase_23 | AC | 49 ms
6,940 KB |
testcase_24 | AC | 48 ms
6,940 KB |
testcase_25 | AC | 49 ms
6,944 KB |
testcase_26 | AC | 49 ms
6,940 KB |
testcase_27 | AC | 48 ms
6,944 KB |
ソースコード
/* #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") //*/ // #include <atcoder/all> #include <bits/stdc++.h> using namespace std; // using namespace atcoder; // #define _GLIBCXX_DEBUG #define DEBUG(x) cerr << #x << ": " << x << endl; #define DEBUG_VEC(v) \ cerr << #v << ":"; \ for (int iiiiiiii = 0; iiiiiiii < v.size(); iiiiiiii++) \ cerr << " " << v[iiiiiiii]; \ cerr << endl; #define DEBUG_MAT(v) \ cerr << #v << endl; \ for (int iv = 0; iv < v.size(); iv++) { \ for (int jv = 0; jv < v[iv].size(); jv++) { \ cerr << v[iv][jv] << " "; \ } \ cerr << endl; \ } typedef long long ll; // #define int ll #define vi vector<int> #define vl vector<ll> #define vii vector<vector<int>> #define vll vector<vector<ll>> #define pii pair<int, int> #define pis pair<int, string> #define psi pair<string, int> #define pll pair<ll, ll> template <class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first + t.first, s.second + t.second); } template <class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); } template <class S, class T> ostream &operator<<(ostream &os, pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rep1(i, n) for (int i = 1; i <= (int)(n); i++) #define rrep(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rrep1(i, n) for (int i = (int)(n); i > 0; i--) #define REP(i, a, b) for (int i = a; i < b; i++) #define in(x, a, b) (a <= x && x < b) #define all(c) c.begin(), c.end() void YES(bool t = true) { cout << (t ? "YES" : "NO") << endl; } void Yes(bool t = true) { cout << (t ? "Yes" : "No") << endl; } void yes(bool t = true) { cout << (t ? "yes" : "no") << endl; } void NO(bool t = true) { cout << (t ? "NO" : "YES") << endl; } void No(bool t = true) { cout << (t ? "No" : "Yes") << endl; } void no(bool t = true) { cout << (t ? "no" : "yes") << endl; } template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } #define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end()); const ll inf = 1000000001; const ll INF = (ll)1e18 + 1; const long double pi = 3.1415926535897932384626433832795028841971L; int popcount(ll t) { return __builtin_popcountll(t); } vector<int> gen_perm(int n) { vector<int> ret(n); iota(all(ret), 0); return ret; } // int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; // int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 }; vi dx = {0, 0, -1, 1}, dy = {-1, 1, 0, 0}; vi dx2 = {1, 1, 0, -1, -1, -1, 0, 1}, dy2 = {0, 1, 1, 1, 0, -1, -1, -1}; struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(25); cerr << fixed << setprecision(25); } } setup_io; // constexpr ll MOD = 1000000007; constexpr ll MOD = 998244353; // #define mp make_pair // #define endl '\n' // https://judge.yosupo.jp/submission/55343 // noimi のライブラリを窃盗した namespace inner { using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; template <typename T> T gcd(T a, T b) { while (b) swap(a %= b, b); return a; } uint64_t gcd_impl(uint64_t n, uint64_t m) { constexpr uint64_t K = 5; for (int i = 0; i < 80; ++i) { uint64_t t = n - m; uint64_t s = n - m * K; bool q = t < m; bool p = t < m * K; n = q ? m : t; m = q ? t : m; if (m == 0) return n; n = p ? n : s; } return gcd_impl(m, n % m); } uint64_t gcd_pre(uint64_t n, uint64_t m) { for (int i = 0; i < 4; ++i) { uint64_t t = n - m; bool q = t < m; n = q ? m : t; m = q ? t : m; if (m == 0) return n; } return gcd_impl(n, m); } uint64_t gcd_fast(uint64_t n, uint64_t m) { return n > m ? gcd_pre(n, m) : gcd_pre(m, n); } template <typename T = int32_t> T inv(T a, T p) { T b = p, x = 1, y = 0; while (a) { T q = b % a; swap(a, b /= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } template <typename T = int32_t, typename U = int64_t> T modpow(T a, U n, T p) { T ret = 1; for (; n; n >>= 1, a = U(a) * a % p) if (n & 1) ret = U(ret) * a % p; return ret; } } // namespace inner unsigned long long rng() { static unsigned long long x_ = 88172645463325252ULL; x_ = x_ ^ (x_ << 7); return x_ = x_ ^ (x_ >> 9); } using namespace std; struct ArbitraryLazyMontgomeryModInt { using mint = ArbitraryLazyMontgomeryModInt; using i32 = int32_t; using u32 = uint32_t; using u64 = uint64_t; static u32 mod; static u32 r; static u32 n2; static u32 get_r() { u32 ret = mod; for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u32 m) { assert(m < (1 << 30)); assert((m & 1) == 1); mod = m; n2 = -u64(m) % m; r = get_r(); assert(r * mod == 1); } u32 a; ArbitraryLazyMontgomeryModInt() : a(0) {} ArbitraryLazyMontgomeryModInt(const int64_t &b) : a(reduce(u64(b % mod + mod) * n2)){}; static u32 reduce(const u64 &b) { return (b + u64(u32(b) * u32(-r)) * mod) >> 32; } mint &operator+=(const mint &b) { if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i32(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u64(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u64 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = ArbitraryLazyMontgomeryModInt(t); return (is); } mint inverse() const { return pow(mod - 2); } u32 get() const { u32 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u32 get_mod() { return mod; } }; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r; typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2; using namespace std; struct montgomery64 { using mint = montgomery64; using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } u64 a; montgomery64() : a(0) {} montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } mint &operator+=(const mint &b) { if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint &operator-=(const mint &b) { if (i64(a -= b.a) < 0) a += 2 * mod; return *this; } mint &operator*=(const mint &b) { a = reduce(u128(a) * b.a); return *this; } mint &operator/=(const mint &b) { *this *= b.inverse(); return *this; } mint operator+(const mint &b) const { return mint(*this) += b; } mint operator-(const mint &b) const { return mint(*this) -= b; } mint operator*(const mint &b) const { return mint(*this) *= b; } mint operator/(const mint &b) const { return mint(*this) /= b; } bool operator==(const mint &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint() - mint(*this); } mint pow(u128 n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const mint &b) { return os << b.get(); } friend istream &operator>>(istream &is, mint &b) { int64_t t; is >> t; b = montgomery64(t); return (is); } mint inverse() const { return pow(mod - 2); } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } static u64 get_mod() { return mod; } }; typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2; namespace fast_factorize { using u64 = uint64_t; template <typename mint> bool miller_rabin(u64 n, vector<u64> as) { if (mint::get_mod() != n) mint::set_mod(n); u64 d = n - 1; while (~d & 1) d >>= 1; mint e{1}, rev{int64_t(n - 1)}; for (u64 a : as) { if (n <= a) break; u64 t = d; mint y = mint(a).pow(t); while (t != n - 1 && y != e && y != rev) { y *= y; t *= 2; } if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(u64 n) { if (~n & 1) return n == 2; if (n <= 1) return false; if (n < (1LL << 30)) return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61}); else return miller_rabin<montgomery64>(n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd(), y = rnd(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = inner::gcd_fast(q.get(), n); } } if (g == n) do g = inner::gcd_fast((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } vector<u64> inner_factorize(u64 n) { if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) p = pollard_rho<ArbitraryLazyMontgomeryModInt>(n); else p = pollard_rho<montgomery64>(n); if (p == n) return {p}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<u64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::factorize; using fast_factorize::is_prime; int main() { int t; cin >> t; while (t--) { ll n; cin >> n; auto f = factorize(n); Yes(f.size() == 3); } }